Loading…
Pose-Guided Part-Based Adaptive Pyramid Features for Occluded Person Reidentification
Reidentifying an occluded person across nonoverlapping cameras is still a challenging task. In this work, we propose a novel pose-guided part-based adaptive pyramid neural network for occluded person reidentification. Firstly, to alleviate the impact of occlusion, we utilize pose landmarks to genera...
Saved in:
Published in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-8 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reidentifying an occluded person across nonoverlapping cameras is still a challenging task. In this work, we propose a novel pose-guided part-based adaptive pyramid neural network for occluded person reidentification. Firstly, to alleviate the impact of occlusion, we utilize pose landmarks to generate pose-guided attention maps. The attention maps will help the model focus on the nonoccluded regions. Secondly, we use pyramid pooling to extract multiscale features in order to address the scale variation problem. The generated pyramid features are then multiplied by attention maps to achieve pose-guided adaptive pyramid features. Thirdly, we propose a pose-guided body part partition scheme to deal with the alignment problem. Accordingly, the adaptive pyramid features are divided into partitions and fed into individual fully connected layers. In the end, all the part-based matching scores are fused with a weighted sum rule for person reidentification. The effectiveness of our method is clearly validated by the experimental results on two popular occluded and holistic datasets, i.e., Occluded-DukeMTMC and the Market-1501. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2020/6694670 |