Loading…
Mechanical and delamination studies on siliconized chitosan and morinda‐citrifolia natural fiber‐reinforced epoxy composite in drilling
In this research, the effect of siliconized chitosan biopolymeric particles and morinda fiber in epoxy composite and their mechanical and machining behavior were studied. The primary aim of this research was to investigate how the silane‐treatment influences the surfaces of natural biopolymeric part...
Saved in:
Published in: | Polymer composites 2021-01, Vol.42 (1), p.181-190 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this research, the effect of siliconized chitosan biopolymeric particles and morinda fiber in epoxy composite and their mechanical and machining behavior were studied. The primary aim of this research was to investigate how the silane‐treatment influences the surfaces of natural biopolymeric particle and fiber in epoxy composite and to study the mechanical and machining behavior. The chitosan and morinda fibers were surface‐treated using an amino silane 3‐Aminopropyltrimethoxylane (APTMS) via aqueous solution method. The composites were prepared using the hand lay‐up method followed by post‐curing at 120οC. The mechanical results showed that the silane surface‐treated chitosan and morinda natural fiber‐reinforced epoxy composite gives improved tensile, flexural and impact results of 148 MPa, 163Mpa and 6.9 J respectively. The inter‐laminar shear strength of silane‐treated morinda fiber gave the highest value of 28 MPa. Similarly, in the drilling process, the surface‐treated reinforcements showed the highest adhesion with matrix without any delamination. The drilled hole dimension stability at the top and the bottom surface was significantly high for silane‐treated epoxy composites. The scanning electron microscope images revealed high adhesion of fiber and uniform dispersion of chitosan particle in the epoxy matrix. Hence, this study confirms that silane surface‐treatment is an essential process while making high‐performance natural composites for various engineering applications. |
---|---|
ISSN: | 0272-8397 1548-0569 |
DOI: | 10.1002/pc.25817 |