Loading…

Local voting: A new distributed bandwidth reservation algorithm for 6TiSCH networks

The IETF 6TiSCH working group fosters the adaptation of IPv6-based protocols into Internet of Things by introducing the 6TiSCH Operation Sublayer (6top). The 6TiSCH architecture integrates the high reliability and low-energy consumption of IEEE 802.15.4e Time Slotted Channel Hopping (TSCH) with IPv6...

Full description

Saved in:
Bibliographic Details
Published in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2020-10, Vol.180, p.107384, Article 107384
Main Authors: Vergados, Dimitrios J., Kralevska, Katina, Jiang, Yuming, Michalas, Angelos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The IETF 6TiSCH working group fosters the adaptation of IPv6-based protocols into Internet of Things by introducing the 6TiSCH Operation Sublayer (6top). The 6TiSCH architecture integrates the high reliability and low-energy consumption of IEEE 802.15.4e Time Slotted Channel Hopping (TSCH) with IPv6. IEEE 802.15.4e TSCH defines only the communication between nodes through a schedule but it does not specify how the resources are allocated for communication between the nodes in 6TiSCH networks. We propose a distributed algorithm for bandwidth allocation, called Local Voting, that adapts the schedule to the network conditions. The algorithm tries to equalize the link load (defined as the ratio of the queue length plus the new packet arrivals, over the number of allocated cells) through cell reallocation by calculating the number of cells to be added or released by 6top. Simulation results show that equalizing the load throughout 6TiSCH network provides better fairness in terms of load, reduces the queue sizes and packets reach the root faster compared to representative algorithms from the literature. Local Voting combines good delay performance and energy efficiency that are crucial features for Industrial Internet-of-Things applications.
ISSN:1389-1286
1872-7069
DOI:10.1016/j.comnet.2020.107384