Loading…

Characterization of PA‐12 specimens fabricated by projection sintering at various sintering parameters

Large area projection sintering (LAPS) promises to be a new method in the field of additive manufacturing. Developed in the Mechanical Engineering Department, University of South Florida, LAPS uses long exposure times over a broad area of powder to fuse into dense, reproducible materials. In contras...

Full description

Saved in:
Bibliographic Details
Published in:Polymer engineering and science 2021-01, Vol.61 (1), p.221-233
Main Authors: Kaur, Taranjot, Nussbaum, Justin, Lee, Sanboh, Rodriguez, Kevin, Crane, Nathan B., Harmon, Julie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large area projection sintering (LAPS) promises to be a new method in the field of additive manufacturing. Developed in the Mechanical Engineering Department, University of South Florida, LAPS uses long exposure times over a broad area of powder to fuse into dense, reproducible materials. In contrast, LS, a common powder‐based additive manufacturing, uses a focused beam of light scanned quickly over the material. Local regions of concentrated high‐energy bursts of light lead to higher peak temperatures and differing cooling dynamics and overall crystallinity. The mechanical properties of laser sintered specimens suffer because of uneven particle fusion. LAPS offers the capacity to fine‐tune fusion properties through enhanced thermodynamic control of the heating and cooling profiles for sintering. Further research is required to identify the relationship between LAPS build settings and part properties to enable the fabrication of custom parts with desired properties. This study examines the influence of LAPS sintering parameters on chemical structures, crystallinity, mechanical, and thermal properties of polyamide‐12 specimens using powder X‐ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, small‐angle X‐ray scattering, scanning electron microscopy, and microhardness testing. It was observed that higher crystallinity was imparted to specimens that were sintered for a shorter time and vice versa.
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.25570