Loading…
Improved ICA algorithm for ECG feature extraction and R‐peak detection
Summary Electrocardiogram (ECG) signal transmission and monitoring plays a paramount role in long‐term cardiac monitoring and analysis to provide remote health care in time, especially for the postoperative people and people in remote areas. The accuracy of ECG signals is of fundamental importance i...
Saved in:
Published in: | International journal of adaptive control and signal processing 2021-01, Vol.35 (1), p.38-50 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
Electrocardiogram (ECG) signal transmission and monitoring plays a paramount role in long‐term cardiac monitoring and analysis to provide remote health care in time, especially for the postoperative people and people in remote areas. The accuracy of ECG signals is of fundamental importance in cardiac diagnosis like R‐peak detection. So we need to incorporate analytical methods in existing healthcare systems, to capture more meaningful ECG components and to represent physical cardiac sources more clearly. With this aim, hardware optimized FCAICA (fast confluence adaptive independent component analysis) algorithm is proposed to extract pure ECG components from the ECG mixtures. The extracted signals are then subjected to R‐peak detection for further analysis. The proposed improved fast confluence adaptive independent component analysis (IFCAICA) method occupies less hardware resources, consumes low power, improves accuracy, and sensitivity in R‐peaks detection. In 0.18 nm technology, the IFCAICA consumes 10.13 mW of power and operates with 3.4 MHz operating frequency. |
---|---|
ISSN: | 0890-6327 1099-1115 |
DOI: | 10.1002/acs.3186 |