Loading…
Left-exact Localizations of \(\infty\)-Topoi I: Higher Sheaves
We are developing tools for working with arbitrary left-exact localizations of \(\infty\)-topoi. We introduce a notion of higher sheaf with respect to an arbitrary set of maps \(\Sigma\) in an \(\infty\)-topos \(\mathscr{E}\). We show that the full subcategory of higher sheaves \(\mathrm{Sh}(\mathsc...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Anel, Mathieu Biedermann, Georg Finster, Eric Joyal, André |
description | We are developing tools for working with arbitrary left-exact localizations of \(\infty\)-topoi. We introduce a notion of higher sheaf with respect to an arbitrary set of maps \(\Sigma\) in an \(\infty\)-topos \(\mathscr{E}\). We show that the full subcategory of higher sheaves \(\mathrm{Sh}(\mathscr{E},\Sigma)\) is an \(\infty\)-topos, and that the sheaf reflection \(\mathscr{E}\to \mathrm{Sh}(\mathscr{E},\Sigma)\) is the left-exact localization generated by \(\Sigma\). The proof depends on the notion of congruence, which is a substitute for the notion of Grothendieck topology in 1-topos theory. |
doi_str_mv | 10.48550/arxiv.2101.02791 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2476742349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476742349</sourcerecordid><originalsourceid>FETCH-proquest_journals_24767423493</originalsourceid><addsrcrecordid>eNqNyjEKwjAYQOEgCIr2AG4BFx1Skz9pow4uolToZsdCCSXVSGk0iaKeXgcP4PSG7yE0YTQWyyShC-We5hEDoyymIFesh4bAOSNLATBAkfcXSimkEpKED9Em100g-qnqgHNbq9a8VTC289g2uJyVpmvCq5yTwl6twYc1zszprB0-nrV6aD9G_Ua1Xke_jtB0vyu2Gbk6e7trH6qLvbvuSxUImUoBXKz4f9cHCwA9ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476742349</pqid></control><display><type>article</type><title>Left-exact Localizations of \(\infty\)-Topoi I: Higher Sheaves</title><source>ProQuest - Publicly Available Content Database</source><creator>Anel, Mathieu ; Biedermann, Georg ; Finster, Eric ; Joyal, André</creator><creatorcontrib>Anel, Mathieu ; Biedermann, Georg ; Finster, Eric ; Joyal, André</creatorcontrib><description>We are developing tools for working with arbitrary left-exact localizations of \(\infty\)-topoi. We introduce a notion of higher sheaf with respect to an arbitrary set of maps \(\Sigma\) in an \(\infty\)-topos \(\mathscr{E}\). We show that the full subcategory of higher sheaves \(\mathrm{Sh}(\mathscr{E},\Sigma)\) is an \(\infty\)-topos, and that the sheaf reflection \(\mathscr{E}\to \mathrm{Sh}(\mathscr{E},\Sigma)\) is the left-exact localization generated by \(\Sigma\). The proof depends on the notion of congruence, which is a substitute for the notion of Grothendieck topology in 1-topos theory.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2101.02791</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Factorization ; Sheaves</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2476742349?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Anel, Mathieu</creatorcontrib><creatorcontrib>Biedermann, Georg</creatorcontrib><creatorcontrib>Finster, Eric</creatorcontrib><creatorcontrib>Joyal, André</creatorcontrib><title>Left-exact Localizations of \(\infty\)-Topoi I: Higher Sheaves</title><title>arXiv.org</title><description>We are developing tools for working with arbitrary left-exact localizations of \(\infty\)-topoi. We introduce a notion of higher sheaf with respect to an arbitrary set of maps \(\Sigma\) in an \(\infty\)-topos \(\mathscr{E}\). We show that the full subcategory of higher sheaves \(\mathrm{Sh}(\mathscr{E},\Sigma)\) is an \(\infty\)-topos, and that the sheaf reflection \(\mathscr{E}\to \mathrm{Sh}(\mathscr{E},\Sigma)\) is the left-exact localization generated by \(\Sigma\). The proof depends on the notion of congruence, which is a substitute for the notion of Grothendieck topology in 1-topos theory.</description><subject>Factorization</subject><subject>Sheaves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyjEKwjAYQOEgCIr2AG4BFx1Skz9pow4uolToZsdCCSXVSGk0iaKeXgcP4PSG7yE0YTQWyyShC-We5hEDoyymIFesh4bAOSNLATBAkfcXSimkEpKED9Em100g-qnqgHNbq9a8VTC289g2uJyVpmvCq5yTwl6twYc1zszprB0-nrV6aD9G_Ua1Xke_jtB0vyu2Gbk6e7trH6qLvbvuSxUImUoBXKz4f9cHCwA9ew</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Anel, Mathieu</creator><creator>Biedermann, Georg</creator><creator>Finster, Eric</creator><creator>Joyal, André</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220301</creationdate><title>Left-exact Localizations of \(\infty\)-Topoi I: Higher Sheaves</title><author>Anel, Mathieu ; Biedermann, Georg ; Finster, Eric ; Joyal, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24767423493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Factorization</topic><topic>Sheaves</topic><toplevel>online_resources</toplevel><creatorcontrib>Anel, Mathieu</creatorcontrib><creatorcontrib>Biedermann, Georg</creatorcontrib><creatorcontrib>Finster, Eric</creatorcontrib><creatorcontrib>Joyal, André</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anel, Mathieu</au><au>Biedermann, Georg</au><au>Finster, Eric</au><au>Joyal, André</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Left-exact Localizations of \(\infty\)-Topoi I: Higher Sheaves</atitle><jtitle>arXiv.org</jtitle><date>2022-03-01</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We are developing tools for working with arbitrary left-exact localizations of \(\infty\)-topoi. We introduce a notion of higher sheaf with respect to an arbitrary set of maps \(\Sigma\) in an \(\infty\)-topos \(\mathscr{E}\). We show that the full subcategory of higher sheaves \(\mathrm{Sh}(\mathscr{E},\Sigma)\) is an \(\infty\)-topos, and that the sheaf reflection \(\mathscr{E}\to \mathrm{Sh}(\mathscr{E},\Sigma)\) is the left-exact localization generated by \(\Sigma\). The proof depends on the notion of congruence, which is a substitute for the notion of Grothendieck topology in 1-topos theory.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2101.02791</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2476742349 |
source | ProQuest - Publicly Available Content Database |
subjects | Factorization Sheaves |
title | Left-exact Localizations of \(\infty\)-Topoi I: Higher Sheaves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Left-exact%20Localizations%20of%20%5C(%5Cinfty%5C)-Topoi%20I:%20Higher%20Sheaves&rft.jtitle=arXiv.org&rft.au=Anel,%20Mathieu&rft.date=2022-03-01&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2101.02791&rft_dat=%3Cproquest%3E2476742349%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24767423493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2476742349&rft_id=info:pmid/&rfr_iscdi=true |