Loading…
Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper
Direct electrochemical conversion of CO 2 to ethanol offers a promising strategy to lower CO 2 emissions while storing energy from renewable electricity. However, current electrocatalysts offer only limited selectivity toward ethanol. Here we report a carbon-supported copper (Cu) catalyst, synthesiz...
Saved in:
Published in: | Nature energy 2020-08, Vol.5 (8), p.623-632 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c259x-4ea5ed4fa284691551ad9502d81c8e3eb23914f4672d2908a97c83942f5fd4ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c259x-4ea5ed4fa284691551ad9502d81c8e3eb23914f4672d2908a97c83942f5fd4ee3 |
container_end_page | 632 |
container_issue | 8 |
container_start_page | 623 |
container_title | Nature energy |
container_volume | 5 |
creator | Xu, Haiping Rebollar, Dominic He, Haiying Chong, Lina Liu, Yuzi Liu, Cong Sun, Cheng-Jun Li, Tao Muntean, John V. Winans, Randall E. Liu, Di-Jia Xu, Tao |
description | Direct electrochemical conversion of CO
2
to ethanol offers a promising strategy to lower CO
2
emissions while storing energy from renewable electricity. However, current electrocatalysts offer only limited selectivity toward ethanol. Here we report a carbon-supported copper (Cu) catalyst, synthesized by an amalgamated Cu–Li method, that achieves a single-product Faradaic efficiency (FE) of 91% at −0.7 V (versus the reversible hydrogen electrode) and onset potential as low as −0.4 V (reversible hydrogen electrode) for electrocatalytic CO
2
-to-ethanol conversion. The catalyst operated stably over 16 h. The FE of ethanol was highly sensitive to the initial dispersion of Cu atoms and decreased significantly when CuO and large Cu clusters become predominant species. Operando X-ray absorption spectroscopy identified a reversible transformation from atomically dispersed Cu atoms to Cu
n
clusters (
n
= 3 and 4) on application of electrochemical conditions. First-principles calculations further elucidate the possible catalytic mechanism of CO
2
reduction over Cu
n
.
Electrocatalytically reducing CO
2
to ethanol can provide renewably generated fuel, but catalysts are often poorly selective for this conversion. Here the authors use a Cu catalyst to produce ethanol with high selectivity. Cu dispersion is key to the performance and operando studies indicate that it changes under reaction conditions. |
doi_str_mv | 10.1038/s41560-020-0666-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476742819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434147268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259x-4ea5ed4fa284691551ad9502d81c8e3eb23914f4672d2908a97c83942f5fd4ee3</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYsouOh-AG8Bz9VkmqTJURb_wYIXPYeYTLVL26xJV7Znv7jRVfSih2EeM783c3hFccLoGaOVOk-cCUlLCrmklOV2r5gBFaqsBZf7v_RhMU9pRSkFDSAUmxVvN-3TczeRhB26sX1F8ilicHa03TS2jizugET0m7wOAxkDwfHZDqEjjxPpMVNdhly3SSPGRPw02L51eTqRJsQePWli6Ikdw_fYt2md0bxxYZ3VcXHQ2C7h_KsfFQ9Xl_eLm3J5d327uFiWDoTelhytQM8bC4pLzYRg1mtBwSvmFFb4CJVmvOGyBg-aKqtrpyrNoRGN54jVUXG6u7uO4WWDaTSrsIlDfmmA17LmoJj-n6o44zVIlSm2o1wMKUVszDq2vY2TYdR8hGJ2oZgcivkIxWyzB3aelNnhCePP5b9N7z3JkWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434147268</pqid></control><display><type>article</type><title>Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper</title><source>Alma/SFX Local Collection</source><creator>Xu, Haiping ; Rebollar, Dominic ; He, Haiying ; Chong, Lina ; Liu, Yuzi ; Liu, Cong ; Sun, Cheng-Jun ; Li, Tao ; Muntean, John V. ; Winans, Randall E. ; Liu, Di-Jia ; Xu, Tao</creator><creatorcontrib>Xu, Haiping ; Rebollar, Dominic ; He, Haiying ; Chong, Lina ; Liu, Yuzi ; Liu, Cong ; Sun, Cheng-Jun ; Li, Tao ; Muntean, John V. ; Winans, Randall E. ; Liu, Di-Jia ; Xu, Tao</creatorcontrib><description>Direct electrochemical conversion of CO
2
to ethanol offers a promising strategy to lower CO
2
emissions while storing energy from renewable electricity. However, current electrocatalysts offer only limited selectivity toward ethanol. Here we report a carbon-supported copper (Cu) catalyst, synthesized by an amalgamated Cu–Li method, that achieves a single-product Faradaic efficiency (FE) of 91% at −0.7 V (versus the reversible hydrogen electrode) and onset potential as low as −0.4 V (reversible hydrogen electrode) for electrocatalytic CO
2
-to-ethanol conversion. The catalyst operated stably over 16 h. The FE of ethanol was highly sensitive to the initial dispersion of Cu atoms and decreased significantly when CuO and large Cu clusters become predominant species. Operando X-ray absorption spectroscopy identified a reversible transformation from atomically dispersed Cu atoms to Cu
n
clusters (
n
= 3 and 4) on application of electrochemical conditions. First-principles calculations further elucidate the possible catalytic mechanism of CO
2
reduction over Cu
n
.
Electrocatalytically reducing CO
2
to ethanol can provide renewably generated fuel, but catalysts are often poorly selective for this conversion. Here the authors use a Cu catalyst to produce ethanol with high selectivity. Cu dispersion is key to the performance and operando studies indicate that it changes under reaction conditions.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-020-0666-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/886 ; 639/4077/909/4101/4102 ; 639/638/161 ; Absorption spectroscopy ; Carbon dioxide ; Carbon dioxide emissions ; Catalysts ; Chemical synthesis ; Clusters ; Copper ; Copper converters ; Dispersion ; Economics and Management ; Electrocatalysts ; Electrochemistry ; Electrodes ; Energy ; Energy Policy ; Energy Storage ; Energy Systems ; Ethanol ; First principles ; Hydrogen ; Renewable and Green Energy ; Selectivity ; X ray absorption ; X-ray absorption spectroscopy</subject><ispartof>Nature energy, 2020-08, Vol.5 (8), p.623-632</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259x-4ea5ed4fa284691551ad9502d81c8e3eb23914f4672d2908a97c83942f5fd4ee3</citedby><cites>FETCH-LOGICAL-c259x-4ea5ed4fa284691551ad9502d81c8e3eb23914f4672d2908a97c83942f5fd4ee3</cites><orcidid>0000-0002-8733-1683 ; 0000-0002-3343-7263 ; 0000-0002-3493-2784 ; 0000-0003-1930-0401 ; 0000-0002-2145-5034 ; 0000-0002-4913-4486 ; 0000-0002-7080-7673 ; 0000-0003-1747-028X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Xu, Haiping</creatorcontrib><creatorcontrib>Rebollar, Dominic</creatorcontrib><creatorcontrib>He, Haiying</creatorcontrib><creatorcontrib>Chong, Lina</creatorcontrib><creatorcontrib>Liu, Yuzi</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Sun, Cheng-Jun</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Muntean, John V.</creatorcontrib><creatorcontrib>Winans, Randall E.</creatorcontrib><creatorcontrib>Liu, Di-Jia</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><title>Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>Direct electrochemical conversion of CO
2
to ethanol offers a promising strategy to lower CO
2
emissions while storing energy from renewable electricity. However, current electrocatalysts offer only limited selectivity toward ethanol. Here we report a carbon-supported copper (Cu) catalyst, synthesized by an amalgamated Cu–Li method, that achieves a single-product Faradaic efficiency (FE) of 91% at −0.7 V (versus the reversible hydrogen electrode) and onset potential as low as −0.4 V (reversible hydrogen electrode) for electrocatalytic CO
2
-to-ethanol conversion. The catalyst operated stably over 16 h. The FE of ethanol was highly sensitive to the initial dispersion of Cu atoms and decreased significantly when CuO and large Cu clusters become predominant species. Operando X-ray absorption spectroscopy identified a reversible transformation from atomically dispersed Cu atoms to Cu
n
clusters (
n
= 3 and 4) on application of electrochemical conditions. First-principles calculations further elucidate the possible catalytic mechanism of CO
2
reduction over Cu
n
.
Electrocatalytically reducing CO
2
to ethanol can provide renewably generated fuel, but catalysts are often poorly selective for this conversion. Here the authors use a Cu catalyst to produce ethanol with high selectivity. Cu dispersion is key to the performance and operando studies indicate that it changes under reaction conditions.</description><subject>639/301/299/886</subject><subject>639/4077/909/4101/4102</subject><subject>639/638/161</subject><subject>Absorption spectroscopy</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Clusters</subject><subject>Copper</subject><subject>Copper converters</subject><subject>Dispersion</subject><subject>Economics and Management</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Ethanol</subject><subject>First principles</subject><subject>Hydrogen</subject><subject>Renewable and Green Energy</subject><subject>Selectivity</subject><subject>X ray absorption</subject><subject>X-ray absorption spectroscopy</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LxDAQxYsouOh-AG8Bz9VkmqTJURb_wYIXPYeYTLVL26xJV7Znv7jRVfSih2EeM783c3hFccLoGaOVOk-cCUlLCrmklOV2r5gBFaqsBZf7v_RhMU9pRSkFDSAUmxVvN-3TczeRhB26sX1F8ilicHa03TS2jizugET0m7wOAxkDwfHZDqEjjxPpMVNdhly3SSPGRPw02L51eTqRJsQePWli6Ikdw_fYt2md0bxxYZ3VcXHQ2C7h_KsfFQ9Xl_eLm3J5d327uFiWDoTelhytQM8bC4pLzYRg1mtBwSvmFFb4CJVmvOGyBg-aKqtrpyrNoRGN54jVUXG6u7uO4WWDaTSrsIlDfmmA17LmoJj-n6o44zVIlSm2o1wMKUVszDq2vY2TYdR8hGJ2oZgcivkIxWyzB3aelNnhCePP5b9N7z3JkWg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Xu, Haiping</creator><creator>Rebollar, Dominic</creator><creator>He, Haiying</creator><creator>Chong, Lina</creator><creator>Liu, Yuzi</creator><creator>Liu, Cong</creator><creator>Sun, Cheng-Jun</creator><creator>Li, Tao</creator><creator>Muntean, John V.</creator><creator>Winans, Randall E.</creator><creator>Liu, Di-Jia</creator><creator>Xu, Tao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8733-1683</orcidid><orcidid>https://orcid.org/0000-0002-3343-7263</orcidid><orcidid>https://orcid.org/0000-0002-3493-2784</orcidid><orcidid>https://orcid.org/0000-0003-1930-0401</orcidid><orcidid>https://orcid.org/0000-0002-2145-5034</orcidid><orcidid>https://orcid.org/0000-0002-4913-4486</orcidid><orcidid>https://orcid.org/0000-0002-7080-7673</orcidid><orcidid>https://orcid.org/0000-0003-1747-028X</orcidid></search><sort><creationdate>20200801</creationdate><title>Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper</title><author>Xu, Haiping ; Rebollar, Dominic ; He, Haiying ; Chong, Lina ; Liu, Yuzi ; Liu, Cong ; Sun, Cheng-Jun ; Li, Tao ; Muntean, John V. ; Winans, Randall E. ; Liu, Di-Jia ; Xu, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259x-4ea5ed4fa284691551ad9502d81c8e3eb23914f4672d2908a97c83942f5fd4ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/299/886</topic><topic>639/4077/909/4101/4102</topic><topic>639/638/161</topic><topic>Absorption spectroscopy</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Clusters</topic><topic>Copper</topic><topic>Copper converters</topic><topic>Dispersion</topic><topic>Economics and Management</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Ethanol</topic><topic>First principles</topic><topic>Hydrogen</topic><topic>Renewable and Green Energy</topic><topic>Selectivity</topic><topic>X ray absorption</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Haiping</creatorcontrib><creatorcontrib>Rebollar, Dominic</creatorcontrib><creatorcontrib>He, Haiying</creatorcontrib><creatorcontrib>Chong, Lina</creatorcontrib><creatorcontrib>Liu, Yuzi</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Sun, Cheng-Jun</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Muntean, John V.</creatorcontrib><creatorcontrib>Winans, Randall E.</creatorcontrib><creatorcontrib>Liu, Di-Jia</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Haiping</au><au>Rebollar, Dominic</au><au>He, Haiying</au><au>Chong, Lina</au><au>Liu, Yuzi</au><au>Liu, Cong</au><au>Sun, Cheng-Jun</au><au>Li, Tao</au><au>Muntean, John V.</au><au>Winans, Randall E.</au><au>Liu, Di-Jia</au><au>Xu, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>5</volume><issue>8</issue><spage>623</spage><epage>632</epage><pages>623-632</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>Direct electrochemical conversion of CO
2
to ethanol offers a promising strategy to lower CO
2
emissions while storing energy from renewable electricity. However, current electrocatalysts offer only limited selectivity toward ethanol. Here we report a carbon-supported copper (Cu) catalyst, synthesized by an amalgamated Cu–Li method, that achieves a single-product Faradaic efficiency (FE) of 91% at −0.7 V (versus the reversible hydrogen electrode) and onset potential as low as −0.4 V (reversible hydrogen electrode) for electrocatalytic CO
2
-to-ethanol conversion. The catalyst operated stably over 16 h. The FE of ethanol was highly sensitive to the initial dispersion of Cu atoms and decreased significantly when CuO and large Cu clusters become predominant species. Operando X-ray absorption spectroscopy identified a reversible transformation from atomically dispersed Cu atoms to Cu
n
clusters (
n
= 3 and 4) on application of electrochemical conditions. First-principles calculations further elucidate the possible catalytic mechanism of CO
2
reduction over Cu
n
.
Electrocatalytically reducing CO
2
to ethanol can provide renewably generated fuel, but catalysts are often poorly selective for this conversion. Here the authors use a Cu catalyst to produce ethanol with high selectivity. Cu dispersion is key to the performance and operando studies indicate that it changes under reaction conditions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-020-0666-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8733-1683</orcidid><orcidid>https://orcid.org/0000-0002-3343-7263</orcidid><orcidid>https://orcid.org/0000-0002-3493-2784</orcidid><orcidid>https://orcid.org/0000-0003-1930-0401</orcidid><orcidid>https://orcid.org/0000-0002-2145-5034</orcidid><orcidid>https://orcid.org/0000-0002-4913-4486</orcidid><orcidid>https://orcid.org/0000-0002-7080-7673</orcidid><orcidid>https://orcid.org/0000-0003-1747-028X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-7546 |
ispartof | Nature energy, 2020-08, Vol.5 (8), p.623-632 |
issn | 2058-7546 2058-7546 |
language | eng |
recordid | cdi_proquest_journals_2476742819 |
source | Alma/SFX Local Collection |
subjects | 639/301/299/886 639/4077/909/4101/4102 639/638/161 Absorption spectroscopy Carbon dioxide Carbon dioxide emissions Catalysts Chemical synthesis Clusters Copper Copper converters Dispersion Economics and Management Electrocatalysts Electrochemistry Electrodes Energy Energy Policy Energy Storage Energy Systems Ethanol First principles Hydrogen Renewable and Green Energy Selectivity X ray absorption X-ray absorption spectroscopy |
title | Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20selective%20electrocatalytic%20CO2%20reduction%20to%20ethanol%20by%20metallic%20clusters%20dynamically%20formed%20from%20atomically%20dispersed%20copper&rft.jtitle=Nature%20energy&rft.au=Xu,%20Haiping&rft.date=2020-08-01&rft.volume=5&rft.issue=8&rft.spage=623&rft.epage=632&rft.pages=623-632&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-020-0666-x&rft_dat=%3Cproquest_cross%3E2434147268%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259x-4ea5ed4fa284691551ad9502d81c8e3eb23914f4672d2908a97c83942f5fd4ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434147268&rft_id=info:pmid/&rfr_iscdi=true |