Loading…

Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper

Direct electrochemical conversion of CO 2 to ethanol offers a promising strategy to lower CO 2 emissions while storing energy from renewable electricity. However, current electrocatalysts offer only limited selectivity toward ethanol. Here we report a carbon-supported copper (Cu) catalyst, synthesiz...

Full description

Saved in:
Bibliographic Details
Published in:Nature energy 2020-08, Vol.5 (8), p.623-632
Main Authors: Xu, Haiping, Rebollar, Dominic, He, Haiying, Chong, Lina, Liu, Yuzi, Liu, Cong, Sun, Cheng-Jun, Li, Tao, Muntean, John V., Winans, Randall E., Liu, Di-Jia, Xu, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c259x-4ea5ed4fa284691551ad9502d81c8e3eb23914f4672d2908a97c83942f5fd4ee3
cites cdi_FETCH-LOGICAL-c259x-4ea5ed4fa284691551ad9502d81c8e3eb23914f4672d2908a97c83942f5fd4ee3
container_end_page 632
container_issue 8
container_start_page 623
container_title Nature energy
container_volume 5
creator Xu, Haiping
Rebollar, Dominic
He, Haiying
Chong, Lina
Liu, Yuzi
Liu, Cong
Sun, Cheng-Jun
Li, Tao
Muntean, John V.
Winans, Randall E.
Liu, Di-Jia
Xu, Tao
description Direct electrochemical conversion of CO 2 to ethanol offers a promising strategy to lower CO 2 emissions while storing energy from renewable electricity. However, current electrocatalysts offer only limited selectivity toward ethanol. Here we report a carbon-supported copper (Cu) catalyst, synthesized by an amalgamated Cu–Li method, that achieves a single-product Faradaic efficiency (FE) of 91% at −0.7 V (versus the reversible hydrogen electrode) and onset potential as low as −0.4 V (reversible hydrogen electrode) for electrocatalytic CO 2 -to-ethanol conversion. The catalyst operated stably over 16 h. The FE of ethanol was highly sensitive to the initial dispersion of Cu atoms and decreased significantly when CuO and large Cu clusters become predominant species. Operando X-ray absorption spectroscopy identified a reversible transformation from atomically dispersed Cu atoms to Cu n clusters ( n  = 3 and 4) on application of electrochemical conditions. First-principles calculations further elucidate the possible catalytic mechanism of CO 2 reduction over Cu n . Electrocatalytically reducing CO 2 to ethanol can provide renewably generated fuel, but catalysts are often poorly selective for this conversion. Here the authors use a Cu catalyst to produce ethanol with high selectivity. Cu dispersion is key to the performance and operando studies indicate that it changes under reaction conditions.
doi_str_mv 10.1038/s41560-020-0666-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476742819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434147268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259x-4ea5ed4fa284691551ad9502d81c8e3eb23914f4672d2908a97c83942f5fd4ee3</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYsouOh-AG8Bz9VkmqTJURb_wYIXPYeYTLVL26xJV7Znv7jRVfSih2EeM783c3hFccLoGaOVOk-cCUlLCrmklOV2r5gBFaqsBZf7v_RhMU9pRSkFDSAUmxVvN-3TczeRhB26sX1F8ilicHa03TS2jizugET0m7wOAxkDwfHZDqEjjxPpMVNdhly3SSPGRPw02L51eTqRJsQePWli6Ikdw_fYt2md0bxxYZ3VcXHQ2C7h_KsfFQ9Xl_eLm3J5d327uFiWDoTelhytQM8bC4pLzYRg1mtBwSvmFFb4CJVmvOGyBg-aKqtrpyrNoRGN54jVUXG6u7uO4WWDaTSrsIlDfmmA17LmoJj-n6o44zVIlSm2o1wMKUVszDq2vY2TYdR8hGJ2oZgcivkIxWyzB3aelNnhCePP5b9N7z3JkWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434147268</pqid></control><display><type>article</type><title>Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper</title><source>Alma/SFX Local Collection</source><creator>Xu, Haiping ; Rebollar, Dominic ; He, Haiying ; Chong, Lina ; Liu, Yuzi ; Liu, Cong ; Sun, Cheng-Jun ; Li, Tao ; Muntean, John V. ; Winans, Randall E. ; Liu, Di-Jia ; Xu, Tao</creator><creatorcontrib>Xu, Haiping ; Rebollar, Dominic ; He, Haiying ; Chong, Lina ; Liu, Yuzi ; Liu, Cong ; Sun, Cheng-Jun ; Li, Tao ; Muntean, John V. ; Winans, Randall E. ; Liu, Di-Jia ; Xu, Tao</creatorcontrib><description>Direct electrochemical conversion of CO 2 to ethanol offers a promising strategy to lower CO 2 emissions while storing energy from renewable electricity. However, current electrocatalysts offer only limited selectivity toward ethanol. Here we report a carbon-supported copper (Cu) catalyst, synthesized by an amalgamated Cu–Li method, that achieves a single-product Faradaic efficiency (FE) of 91% at −0.7 V (versus the reversible hydrogen electrode) and onset potential as low as −0.4 V (reversible hydrogen electrode) for electrocatalytic CO 2 -to-ethanol conversion. The catalyst operated stably over 16 h. The FE of ethanol was highly sensitive to the initial dispersion of Cu atoms and decreased significantly when CuO and large Cu clusters become predominant species. Operando X-ray absorption spectroscopy identified a reversible transformation from atomically dispersed Cu atoms to Cu n clusters ( n  = 3 and 4) on application of electrochemical conditions. First-principles calculations further elucidate the possible catalytic mechanism of CO 2 reduction over Cu n . Electrocatalytically reducing CO 2 to ethanol can provide renewably generated fuel, but catalysts are often poorly selective for this conversion. Here the authors use a Cu catalyst to produce ethanol with high selectivity. Cu dispersion is key to the performance and operando studies indicate that it changes under reaction conditions.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-020-0666-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/886 ; 639/4077/909/4101/4102 ; 639/638/161 ; Absorption spectroscopy ; Carbon dioxide ; Carbon dioxide emissions ; Catalysts ; Chemical synthesis ; Clusters ; Copper ; Copper converters ; Dispersion ; Economics and Management ; Electrocatalysts ; Electrochemistry ; Electrodes ; Energy ; Energy Policy ; Energy Storage ; Energy Systems ; Ethanol ; First principles ; Hydrogen ; Renewable and Green Energy ; Selectivity ; X ray absorption ; X-ray absorption spectroscopy</subject><ispartof>Nature energy, 2020-08, Vol.5 (8), p.623-632</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259x-4ea5ed4fa284691551ad9502d81c8e3eb23914f4672d2908a97c83942f5fd4ee3</citedby><cites>FETCH-LOGICAL-c259x-4ea5ed4fa284691551ad9502d81c8e3eb23914f4672d2908a97c83942f5fd4ee3</cites><orcidid>0000-0002-8733-1683 ; 0000-0002-3343-7263 ; 0000-0002-3493-2784 ; 0000-0003-1930-0401 ; 0000-0002-2145-5034 ; 0000-0002-4913-4486 ; 0000-0002-7080-7673 ; 0000-0003-1747-028X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Xu, Haiping</creatorcontrib><creatorcontrib>Rebollar, Dominic</creatorcontrib><creatorcontrib>He, Haiying</creatorcontrib><creatorcontrib>Chong, Lina</creatorcontrib><creatorcontrib>Liu, Yuzi</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Sun, Cheng-Jun</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Muntean, John V.</creatorcontrib><creatorcontrib>Winans, Randall E.</creatorcontrib><creatorcontrib>Liu, Di-Jia</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><title>Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>Direct electrochemical conversion of CO 2 to ethanol offers a promising strategy to lower CO 2 emissions while storing energy from renewable electricity. However, current electrocatalysts offer only limited selectivity toward ethanol. Here we report a carbon-supported copper (Cu) catalyst, synthesized by an amalgamated Cu–Li method, that achieves a single-product Faradaic efficiency (FE) of 91% at −0.7 V (versus the reversible hydrogen electrode) and onset potential as low as −0.4 V (reversible hydrogen electrode) for electrocatalytic CO 2 -to-ethanol conversion. The catalyst operated stably over 16 h. The FE of ethanol was highly sensitive to the initial dispersion of Cu atoms and decreased significantly when CuO and large Cu clusters become predominant species. Operando X-ray absorption spectroscopy identified a reversible transformation from atomically dispersed Cu atoms to Cu n clusters ( n  = 3 and 4) on application of electrochemical conditions. First-principles calculations further elucidate the possible catalytic mechanism of CO 2 reduction over Cu n . Electrocatalytically reducing CO 2 to ethanol can provide renewably generated fuel, but catalysts are often poorly selective for this conversion. Here the authors use a Cu catalyst to produce ethanol with high selectivity. Cu dispersion is key to the performance and operando studies indicate that it changes under reaction conditions.</description><subject>639/301/299/886</subject><subject>639/4077/909/4101/4102</subject><subject>639/638/161</subject><subject>Absorption spectroscopy</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Clusters</subject><subject>Copper</subject><subject>Copper converters</subject><subject>Dispersion</subject><subject>Economics and Management</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Ethanol</subject><subject>First principles</subject><subject>Hydrogen</subject><subject>Renewable and Green Energy</subject><subject>Selectivity</subject><subject>X ray absorption</subject><subject>X-ray absorption spectroscopy</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LxDAQxYsouOh-AG8Bz9VkmqTJURb_wYIXPYeYTLVL26xJV7Znv7jRVfSih2EeM783c3hFccLoGaOVOk-cCUlLCrmklOV2r5gBFaqsBZf7v_RhMU9pRSkFDSAUmxVvN-3TczeRhB26sX1F8ilicHa03TS2jizugET0m7wOAxkDwfHZDqEjjxPpMVNdhly3SSPGRPw02L51eTqRJsQePWli6Ikdw_fYt2md0bxxYZ3VcXHQ2C7h_KsfFQ9Xl_eLm3J5d327uFiWDoTelhytQM8bC4pLzYRg1mtBwSvmFFb4CJVmvOGyBg-aKqtrpyrNoRGN54jVUXG6u7uO4WWDaTSrsIlDfmmA17LmoJj-n6o44zVIlSm2o1wMKUVszDq2vY2TYdR8hGJ2oZgcivkIxWyzB3aelNnhCePP5b9N7z3JkWg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Xu, Haiping</creator><creator>Rebollar, Dominic</creator><creator>He, Haiying</creator><creator>Chong, Lina</creator><creator>Liu, Yuzi</creator><creator>Liu, Cong</creator><creator>Sun, Cheng-Jun</creator><creator>Li, Tao</creator><creator>Muntean, John V.</creator><creator>Winans, Randall E.</creator><creator>Liu, Di-Jia</creator><creator>Xu, Tao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8733-1683</orcidid><orcidid>https://orcid.org/0000-0002-3343-7263</orcidid><orcidid>https://orcid.org/0000-0002-3493-2784</orcidid><orcidid>https://orcid.org/0000-0003-1930-0401</orcidid><orcidid>https://orcid.org/0000-0002-2145-5034</orcidid><orcidid>https://orcid.org/0000-0002-4913-4486</orcidid><orcidid>https://orcid.org/0000-0002-7080-7673</orcidid><orcidid>https://orcid.org/0000-0003-1747-028X</orcidid></search><sort><creationdate>20200801</creationdate><title>Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper</title><author>Xu, Haiping ; Rebollar, Dominic ; He, Haiying ; Chong, Lina ; Liu, Yuzi ; Liu, Cong ; Sun, Cheng-Jun ; Li, Tao ; Muntean, John V. ; Winans, Randall E. ; Liu, Di-Jia ; Xu, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259x-4ea5ed4fa284691551ad9502d81c8e3eb23914f4672d2908a97c83942f5fd4ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/299/886</topic><topic>639/4077/909/4101/4102</topic><topic>639/638/161</topic><topic>Absorption spectroscopy</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Clusters</topic><topic>Copper</topic><topic>Copper converters</topic><topic>Dispersion</topic><topic>Economics and Management</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Ethanol</topic><topic>First principles</topic><topic>Hydrogen</topic><topic>Renewable and Green Energy</topic><topic>Selectivity</topic><topic>X ray absorption</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Haiping</creatorcontrib><creatorcontrib>Rebollar, Dominic</creatorcontrib><creatorcontrib>He, Haiying</creatorcontrib><creatorcontrib>Chong, Lina</creatorcontrib><creatorcontrib>Liu, Yuzi</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Sun, Cheng-Jun</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Muntean, John V.</creatorcontrib><creatorcontrib>Winans, Randall E.</creatorcontrib><creatorcontrib>Liu, Di-Jia</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Haiping</au><au>Rebollar, Dominic</au><au>He, Haiying</au><au>Chong, Lina</au><au>Liu, Yuzi</au><au>Liu, Cong</au><au>Sun, Cheng-Jun</au><au>Li, Tao</au><au>Muntean, John V.</au><au>Winans, Randall E.</au><au>Liu, Di-Jia</au><au>Xu, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>5</volume><issue>8</issue><spage>623</spage><epage>632</epage><pages>623-632</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>Direct electrochemical conversion of CO 2 to ethanol offers a promising strategy to lower CO 2 emissions while storing energy from renewable electricity. However, current electrocatalysts offer only limited selectivity toward ethanol. Here we report a carbon-supported copper (Cu) catalyst, synthesized by an amalgamated Cu–Li method, that achieves a single-product Faradaic efficiency (FE) of 91% at −0.7 V (versus the reversible hydrogen electrode) and onset potential as low as −0.4 V (reversible hydrogen electrode) for electrocatalytic CO 2 -to-ethanol conversion. The catalyst operated stably over 16 h. The FE of ethanol was highly sensitive to the initial dispersion of Cu atoms and decreased significantly when CuO and large Cu clusters become predominant species. Operando X-ray absorption spectroscopy identified a reversible transformation from atomically dispersed Cu atoms to Cu n clusters ( n  = 3 and 4) on application of electrochemical conditions. First-principles calculations further elucidate the possible catalytic mechanism of CO 2 reduction over Cu n . Electrocatalytically reducing CO 2 to ethanol can provide renewably generated fuel, but catalysts are often poorly selective for this conversion. Here the authors use a Cu catalyst to produce ethanol with high selectivity. Cu dispersion is key to the performance and operando studies indicate that it changes under reaction conditions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-020-0666-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8733-1683</orcidid><orcidid>https://orcid.org/0000-0002-3343-7263</orcidid><orcidid>https://orcid.org/0000-0002-3493-2784</orcidid><orcidid>https://orcid.org/0000-0003-1930-0401</orcidid><orcidid>https://orcid.org/0000-0002-2145-5034</orcidid><orcidid>https://orcid.org/0000-0002-4913-4486</orcidid><orcidid>https://orcid.org/0000-0002-7080-7673</orcidid><orcidid>https://orcid.org/0000-0003-1747-028X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2058-7546
ispartof Nature energy, 2020-08, Vol.5 (8), p.623-632
issn 2058-7546
2058-7546
language eng
recordid cdi_proquest_journals_2476742819
source Alma/SFX Local Collection
subjects 639/301/299/886
639/4077/909/4101/4102
639/638/161
Absorption spectroscopy
Carbon dioxide
Carbon dioxide emissions
Catalysts
Chemical synthesis
Clusters
Copper
Copper converters
Dispersion
Economics and Management
Electrocatalysts
Electrochemistry
Electrodes
Energy
Energy Policy
Energy Storage
Energy Systems
Ethanol
First principles
Hydrogen
Renewable and Green Energy
Selectivity
X ray absorption
X-ray absorption spectroscopy
title Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20selective%20electrocatalytic%20CO2%20reduction%20to%20ethanol%20by%20metallic%20clusters%20dynamically%20formed%20from%20atomically%20dispersed%20copper&rft.jtitle=Nature%20energy&rft.au=Xu,%20Haiping&rft.date=2020-08-01&rft.volume=5&rft.issue=8&rft.spage=623&rft.epage=632&rft.pages=623-632&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-020-0666-x&rft_dat=%3Cproquest_cross%3E2434147268%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259x-4ea5ed4fa284691551ad9502d81c8e3eb23914f4672d2908a97c83942f5fd4ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434147268&rft_id=info:pmid/&rfr_iscdi=true