Loading…

Dataset Definition Standard (DDS)

This document gives a set of recommendations to build and manipulate the datasets used to develop and/or validate machine learning models such as deep neural networks. This document is one of the 3 documents defined in [1] to ensure the quality of datasets. This is a work in progress as good practic...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-01
Main Authors: Cappi, Cyril, Chapdelaine, Camille, Gardes, Laurent, Jenn, Eric, Lefevre, Baptiste, Picard, Sylvaine, Soumarmon, Thomas
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cappi, Cyril
Chapdelaine, Camille
Gardes, Laurent
Jenn, Eric
Lefevre, Baptiste
Picard, Sylvaine
Soumarmon, Thomas
description This document gives a set of recommendations to build and manipulate the datasets used to develop and/or validate machine learning models such as deep neural networks. This document is one of the 3 documents defined in [1] to ensure the quality of datasets. This is a work in progress as good practices evolve along with our understanding of machine learning. The document is divided into three main parts. Section 2 addresses the data collection activity. Section 3 gives recommendations about the annotation process. Finally, Section 4 gives recommendations concerning the breakdown between train, validation, and test datasets. In each part, we first define the desired properties at stake, then we explain the objectives targeted to meet the properties, finally we state the recommendations to reach these objectives.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2476744285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476744285</sourcerecordid><originalsourceid>FETCH-proquest_journals_24767442853</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdEksSSxOLVFwSU3LzMssyczPUwguScxLSSxKUdBwcQnW5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMTczNzExMjC1Nj4lQBANC6LJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476744285</pqid></control><display><type>article</type><title>Dataset Definition Standard (DDS)</title><source>Publicly Available Content Database</source><creator>Cappi, Cyril ; Chapdelaine, Camille ; Gardes, Laurent ; Jenn, Eric ; Lefevre, Baptiste ; Picard, Sylvaine ; Soumarmon, Thomas</creator><creatorcontrib>Cappi, Cyril ; Chapdelaine, Camille ; Gardes, Laurent ; Jenn, Eric ; Lefevre, Baptiste ; Picard, Sylvaine ; Soumarmon, Thomas</creatorcontrib><description>This document gives a set of recommendations to build and manipulate the datasets used to develop and/or validate machine learning models such as deep neural networks. This document is one of the 3 documents defined in [1] to ensure the quality of datasets. This is a work in progress as good practices evolve along with our understanding of machine learning. The document is divided into three main parts. Section 2 addresses the data collection activity. Section 3 gives recommendations about the annotation process. Finally, Section 4 gives recommendations concerning the breakdown between train, validation, and test datasets. In each part, we first define the desired properties at stake, then we explain the objectives targeted to meet the properties, finally we state the recommendations to reach these objectives.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Artificial neural networks ; Datasets ; Machine learning ; Workflow</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2476744285?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Cappi, Cyril</creatorcontrib><creatorcontrib>Chapdelaine, Camille</creatorcontrib><creatorcontrib>Gardes, Laurent</creatorcontrib><creatorcontrib>Jenn, Eric</creatorcontrib><creatorcontrib>Lefevre, Baptiste</creatorcontrib><creatorcontrib>Picard, Sylvaine</creatorcontrib><creatorcontrib>Soumarmon, Thomas</creatorcontrib><title>Dataset Definition Standard (DDS)</title><title>arXiv.org</title><description>This document gives a set of recommendations to build and manipulate the datasets used to develop and/or validate machine learning models such as deep neural networks. This document is one of the 3 documents defined in [1] to ensure the quality of datasets. This is a work in progress as good practices evolve along with our understanding of machine learning. The document is divided into three main parts. Section 2 addresses the data collection activity. Section 3 gives recommendations about the annotation process. Finally, Section 4 gives recommendations concerning the breakdown between train, validation, and test datasets. In each part, we first define the desired properties at stake, then we explain the objectives targeted to meet the properties, finally we state the recommendations to reach these objectives.</description><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdEksSSxOLVFwSU3LzMssyczPUwguScxLSSxKUdBwcQnW5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMTczNzExMjC1Nj4lQBANC6LJQ</recordid><startdate>20210107</startdate><enddate>20210107</enddate><creator>Cappi, Cyril</creator><creator>Chapdelaine, Camille</creator><creator>Gardes, Laurent</creator><creator>Jenn, Eric</creator><creator>Lefevre, Baptiste</creator><creator>Picard, Sylvaine</creator><creator>Soumarmon, Thomas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210107</creationdate><title>Dataset Definition Standard (DDS)</title><author>Cappi, Cyril ; Chapdelaine, Camille ; Gardes, Laurent ; Jenn, Eric ; Lefevre, Baptiste ; Picard, Sylvaine ; Soumarmon, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24767442853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Cappi, Cyril</creatorcontrib><creatorcontrib>Chapdelaine, Camille</creatorcontrib><creatorcontrib>Gardes, Laurent</creatorcontrib><creatorcontrib>Jenn, Eric</creatorcontrib><creatorcontrib>Lefevre, Baptiste</creatorcontrib><creatorcontrib>Picard, Sylvaine</creatorcontrib><creatorcontrib>Soumarmon, Thomas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cappi, Cyril</au><au>Chapdelaine, Camille</au><au>Gardes, Laurent</au><au>Jenn, Eric</au><au>Lefevre, Baptiste</au><au>Picard, Sylvaine</au><au>Soumarmon, Thomas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Dataset Definition Standard (DDS)</atitle><jtitle>arXiv.org</jtitle><date>2021-01-07</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>This document gives a set of recommendations to build and manipulate the datasets used to develop and/or validate machine learning models such as deep neural networks. This document is one of the 3 documents defined in [1] to ensure the quality of datasets. This is a work in progress as good practices evolve along with our understanding of machine learning. The document is divided into three main parts. Section 2 addresses the data collection activity. Section 3 gives recommendations about the annotation process. Finally, Section 4 gives recommendations concerning the breakdown between train, validation, and test datasets. In each part, we first define the desired properties at stake, then we explain the objectives targeted to meet the properties, finally we state the recommendations to reach these objectives.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2476744285
source Publicly Available Content Database
subjects Annotations
Artificial neural networks
Datasets
Machine learning
Workflow
title Dataset Definition Standard (DDS)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Dataset%20Definition%20Standard%20(DDS)&rft.jtitle=arXiv.org&rft.au=Cappi,%20Cyril&rft.date=2021-01-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2476744285%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24767442853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2476744285&rft_id=info:pmid/&rfr_iscdi=true