Loading…
Dataset Definition Standard (DDS)
This document gives a set of recommendations to build and manipulate the datasets used to develop and/or validate machine learning models such as deep neural networks. This document is one of the 3 documents defined in [1] to ensure the quality of datasets. This is a work in progress as good practic...
Saved in:
Published in: | arXiv.org 2021-01 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cappi, Cyril Chapdelaine, Camille Gardes, Laurent Jenn, Eric Lefevre, Baptiste Picard, Sylvaine Soumarmon, Thomas |
description | This document gives a set of recommendations to build and manipulate the datasets used to develop and/or validate machine learning models such as deep neural networks. This document is one of the 3 documents defined in [1] to ensure the quality of datasets. This is a work in progress as good practices evolve along with our understanding of machine learning. The document is divided into three main parts. Section 2 addresses the data collection activity. Section 3 gives recommendations about the annotation process. Finally, Section 4 gives recommendations concerning the breakdown between train, validation, and test datasets. In each part, we first define the desired properties at stake, then we explain the objectives targeted to meet the properties, finally we state the recommendations to reach these objectives. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2476744285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476744285</sourcerecordid><originalsourceid>FETCH-proquest_journals_24767442853</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdEksSSxOLVFwSU3LzMssyczPUwguScxLSSxKUdBwcQnW5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMTczNzExMjC1Nj4lQBANC6LJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476744285</pqid></control><display><type>article</type><title>Dataset Definition Standard (DDS)</title><source>Publicly Available Content Database</source><creator>Cappi, Cyril ; Chapdelaine, Camille ; Gardes, Laurent ; Jenn, Eric ; Lefevre, Baptiste ; Picard, Sylvaine ; Soumarmon, Thomas</creator><creatorcontrib>Cappi, Cyril ; Chapdelaine, Camille ; Gardes, Laurent ; Jenn, Eric ; Lefevre, Baptiste ; Picard, Sylvaine ; Soumarmon, Thomas</creatorcontrib><description>This document gives a set of recommendations to build and manipulate the datasets used to develop and/or validate machine learning models such as deep neural networks. This document is one of the 3 documents defined in [1] to ensure the quality of datasets. This is a work in progress as good practices evolve along with our understanding of machine learning. The document is divided into three main parts. Section 2 addresses the data collection activity. Section 3 gives recommendations about the annotation process. Finally, Section 4 gives recommendations concerning the breakdown between train, validation, and test datasets. In each part, we first define the desired properties at stake, then we explain the objectives targeted to meet the properties, finally we state the recommendations to reach these objectives.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Artificial neural networks ; Datasets ; Machine learning ; Workflow</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2476744285?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Cappi, Cyril</creatorcontrib><creatorcontrib>Chapdelaine, Camille</creatorcontrib><creatorcontrib>Gardes, Laurent</creatorcontrib><creatorcontrib>Jenn, Eric</creatorcontrib><creatorcontrib>Lefevre, Baptiste</creatorcontrib><creatorcontrib>Picard, Sylvaine</creatorcontrib><creatorcontrib>Soumarmon, Thomas</creatorcontrib><title>Dataset Definition Standard (DDS)</title><title>arXiv.org</title><description>This document gives a set of recommendations to build and manipulate the datasets used to develop and/or validate machine learning models such as deep neural networks. This document is one of the 3 documents defined in [1] to ensure the quality of datasets. This is a work in progress as good practices evolve along with our understanding of machine learning. The document is divided into three main parts. Section 2 addresses the data collection activity. Section 3 gives recommendations about the annotation process. Finally, Section 4 gives recommendations concerning the breakdown between train, validation, and test datasets. In each part, we first define the desired properties at stake, then we explain the objectives targeted to meet the properties, finally we state the recommendations to reach these objectives.</description><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdEksSSxOLVFwSU3LzMssyczPUwguScxLSSxKUdBwcQnW5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMTczNzExMjC1Nj4lQBANC6LJQ</recordid><startdate>20210107</startdate><enddate>20210107</enddate><creator>Cappi, Cyril</creator><creator>Chapdelaine, Camille</creator><creator>Gardes, Laurent</creator><creator>Jenn, Eric</creator><creator>Lefevre, Baptiste</creator><creator>Picard, Sylvaine</creator><creator>Soumarmon, Thomas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210107</creationdate><title>Dataset Definition Standard (DDS)</title><author>Cappi, Cyril ; Chapdelaine, Camille ; Gardes, Laurent ; Jenn, Eric ; Lefevre, Baptiste ; Picard, Sylvaine ; Soumarmon, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24767442853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Cappi, Cyril</creatorcontrib><creatorcontrib>Chapdelaine, Camille</creatorcontrib><creatorcontrib>Gardes, Laurent</creatorcontrib><creatorcontrib>Jenn, Eric</creatorcontrib><creatorcontrib>Lefevre, Baptiste</creatorcontrib><creatorcontrib>Picard, Sylvaine</creatorcontrib><creatorcontrib>Soumarmon, Thomas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cappi, Cyril</au><au>Chapdelaine, Camille</au><au>Gardes, Laurent</au><au>Jenn, Eric</au><au>Lefevre, Baptiste</au><au>Picard, Sylvaine</au><au>Soumarmon, Thomas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Dataset Definition Standard (DDS)</atitle><jtitle>arXiv.org</jtitle><date>2021-01-07</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>This document gives a set of recommendations to build and manipulate the datasets used to develop and/or validate machine learning models such as deep neural networks. This document is one of the 3 documents defined in [1] to ensure the quality of datasets. This is a work in progress as good practices evolve along with our understanding of machine learning. The document is divided into three main parts. Section 2 addresses the data collection activity. Section 3 gives recommendations about the annotation process. Finally, Section 4 gives recommendations concerning the breakdown between train, validation, and test datasets. In each part, we first define the desired properties at stake, then we explain the objectives targeted to meet the properties, finally we state the recommendations to reach these objectives.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2476744285 |
source | Publicly Available Content Database |
subjects | Annotations Artificial neural networks Datasets Machine learning Workflow |
title | Dataset Definition Standard (DDS) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Dataset%20Definition%20Standard%20(DDS)&rft.jtitle=arXiv.org&rft.au=Cappi,%20Cyril&rft.date=2021-01-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2476744285%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24767442853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2476744285&rft_id=info:pmid/&rfr_iscdi=true |