Loading…

A Scalable Deep Reinforcement Learning Approach for Traffic Engineering Based on Link Control

As modern communication networks are growing more complicated and dynamic, designing a good Traffic Engineering (TE) policy becomes difficult due to the complexity of solving the optimal traffic scheduling problem. Deep Reinforcement Learning (DRL) provides us with a chance to design a model-free TE...

Full description

Saved in:
Bibliographic Details
Published in:IEEE communications letters 2021-01, Vol.25 (1), p.171-175
Main Authors: Sun, Penghao, Lan, Julong, Li, Junfei, Zhang, Jianpeng, Hu, Yuxiang, Guo, Zehua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c225t-6522a5f9fe9e20dc93b6f7e035ddbedf8de7447d1d065158453a1bea1b5b09013
cites cdi_FETCH-LOGICAL-c225t-6522a5f9fe9e20dc93b6f7e035ddbedf8de7447d1d065158453a1bea1b5b09013
container_end_page 175
container_issue 1
container_start_page 171
container_title IEEE communications letters
container_volume 25
creator Sun, Penghao
Lan, Julong
Li, Junfei
Zhang, Jianpeng
Hu, Yuxiang
Guo, Zehua
description As modern communication networks are growing more complicated and dynamic, designing a good Traffic Engineering (TE) policy becomes difficult due to the complexity of solving the optimal traffic scheduling problem. Deep Reinforcement Learning (DRL) provides us with a chance to design a model-free TE scheme through machine learning. However, existing DRL-based TE solutions cannot be applied to large networks. In this article, we propose to combine the control theory and DRL to design a TE scheme. Our proposed scheme ScaleDRL employs the idea from the pinning control theory to select a subset of links in the network and name them critical links. Based on the traffic distribution information, we use a DRL algorithm to dynamically adjust the link weights for the critical links. Through a weighted shortest path algorithm, the forwarding paths of the flows can be dynamically adjusted. The packet-level simulation shows that ScaleDRL reduces the average end-to-end transmission delay by up to 39% compared to the state-of-the-art in different network topologies.
doi_str_mv 10.1109/LCOMM.2020.3022064
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2477247755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9187430</ieee_id><sourcerecordid>2477247755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-6522a5f9fe9e20dc93b6f7e035ddbedf8de7447d1d065158453a1bea1b5b09013</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDpl7MRxvCyhPKRUlaAsUeQk45KSOsFJF_w9Dq1YzEOae2dGh5BrBjPGQN1l6Wq5nHHgMAuBc4ijEzJhQiQB9-nU95CoQEqVnJOLvt8CQMIFm5CPOX0rdaOLBukDYkdfsbamdSXu0A40Q-1sbTd03nWu1eUn9TO6dtqYuqQLu6ktohsF97rHiraWZrX9omlrB9c2l-TM6KbHq2OdkvfHxTp9DrLV00s6z4KSczEEseBcC6MMKuRQlSosYiMRQlFVBVYmqVBGkaxYBbFgIolEqFmBPkQBClg4JbeHvf7J7z32Q75t9876kzmPpBxDCK_iB1Xp2r53aPLO1TvtfnIG-Ygx_8OYjxjzI0ZvujmYakT8NyiWyCiE8Bei8G4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477247755</pqid></control><display><type>article</type><title>A Scalable Deep Reinforcement Learning Approach for Traffic Engineering Based on Link Control</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sun, Penghao ; Lan, Julong ; Li, Junfei ; Zhang, Jianpeng ; Hu, Yuxiang ; Guo, Zehua</creator><creatorcontrib>Sun, Penghao ; Lan, Julong ; Li, Junfei ; Zhang, Jianpeng ; Hu, Yuxiang ; Guo, Zehua</creatorcontrib><description>As modern communication networks are growing more complicated and dynamic, designing a good Traffic Engineering (TE) policy becomes difficult due to the complexity of solving the optimal traffic scheduling problem. Deep Reinforcement Learning (DRL) provides us with a chance to design a model-free TE scheme through machine learning. However, existing DRL-based TE solutions cannot be applied to large networks. In this article, we propose to combine the control theory and DRL to design a TE scheme. Our proposed scheme ScaleDRL employs the idea from the pinning control theory to select a subset of links in the network and name them critical links. Based on the traffic distribution information, we use a DRL algorithm to dynamically adjust the link weights for the critical links. Through a weighted shortest path algorithm, the forwarding paths of the flows can be dynamically adjusted. The packet-level simulation shows that ScaleDRL reduces the average end-to-end transmission delay by up to 39% compared to the state-of-the-art in different network topologies.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2020.3022064</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Communication networks ; Control theory ; Deep learning ; Deep reinforcement learning ; Heuristic algorithms ; Learning (artificial intelligence) ; Links ; Machine learning ; Network topologies ; Neural networks ; pinning control ; Routing ; software-defined networking ; Traffic control ; Traffic engineering ; Traffic information</subject><ispartof>IEEE communications letters, 2021-01, Vol.25 (1), p.171-175</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-6522a5f9fe9e20dc93b6f7e035ddbedf8de7447d1d065158453a1bea1b5b09013</citedby><cites>FETCH-LOGICAL-c225t-6522a5f9fe9e20dc93b6f7e035ddbedf8de7447d1d065158453a1bea1b5b09013</cites><orcidid>0000-0001-7314-410X ; 0000-0002-8606-9337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9187430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Sun, Penghao</creatorcontrib><creatorcontrib>Lan, Julong</creatorcontrib><creatorcontrib>Li, Junfei</creatorcontrib><creatorcontrib>Zhang, Jianpeng</creatorcontrib><creatorcontrib>Hu, Yuxiang</creatorcontrib><creatorcontrib>Guo, Zehua</creatorcontrib><title>A Scalable Deep Reinforcement Learning Approach for Traffic Engineering Based on Link Control</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>As modern communication networks are growing more complicated and dynamic, designing a good Traffic Engineering (TE) policy becomes difficult due to the complexity of solving the optimal traffic scheduling problem. Deep Reinforcement Learning (DRL) provides us with a chance to design a model-free TE scheme through machine learning. However, existing DRL-based TE solutions cannot be applied to large networks. In this article, we propose to combine the control theory and DRL to design a TE scheme. Our proposed scheme ScaleDRL employs the idea from the pinning control theory to select a subset of links in the network and name them critical links. Based on the traffic distribution information, we use a DRL algorithm to dynamically adjust the link weights for the critical links. Through a weighted shortest path algorithm, the forwarding paths of the flows can be dynamically adjusted. The packet-level simulation shows that ScaleDRL reduces the average end-to-end transmission delay by up to 39% compared to the state-of-the-art in different network topologies.</description><subject>Algorithms</subject><subject>Communication networks</subject><subject>Control theory</subject><subject>Deep learning</subject><subject>Deep reinforcement learning</subject><subject>Heuristic algorithms</subject><subject>Learning (artificial intelligence)</subject><subject>Links</subject><subject>Machine learning</subject><subject>Network topologies</subject><subject>Neural networks</subject><subject>pinning control</subject><subject>Routing</subject><subject>software-defined networking</subject><subject>Traffic control</subject><subject>Traffic engineering</subject><subject>Traffic information</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDpl7MRxvCyhPKRUlaAsUeQk45KSOsFJF_w9Dq1YzEOae2dGh5BrBjPGQN1l6Wq5nHHgMAuBc4ijEzJhQiQB9-nU95CoQEqVnJOLvt8CQMIFm5CPOX0rdaOLBukDYkdfsbamdSXu0A40Q-1sbTd03nWu1eUn9TO6dtqYuqQLu6ktohsF97rHiraWZrX9omlrB9c2l-TM6KbHq2OdkvfHxTp9DrLV00s6z4KSczEEseBcC6MMKuRQlSosYiMRQlFVBVYmqVBGkaxYBbFgIolEqFmBPkQBClg4JbeHvf7J7z32Q75t9876kzmPpBxDCK_iB1Xp2r53aPLO1TvtfnIG-Ygx_8OYjxjzI0ZvujmYakT8NyiWyCiE8Bei8G4g</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Sun, Penghao</creator><creator>Lan, Julong</creator><creator>Li, Junfei</creator><creator>Zhang, Jianpeng</creator><creator>Hu, Yuxiang</creator><creator>Guo, Zehua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7314-410X</orcidid><orcidid>https://orcid.org/0000-0002-8606-9337</orcidid></search><sort><creationdate>202101</creationdate><title>A Scalable Deep Reinforcement Learning Approach for Traffic Engineering Based on Link Control</title><author>Sun, Penghao ; Lan, Julong ; Li, Junfei ; Zhang, Jianpeng ; Hu, Yuxiang ; Guo, Zehua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-6522a5f9fe9e20dc93b6f7e035ddbedf8de7447d1d065158453a1bea1b5b09013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Communication networks</topic><topic>Control theory</topic><topic>Deep learning</topic><topic>Deep reinforcement learning</topic><topic>Heuristic algorithms</topic><topic>Learning (artificial intelligence)</topic><topic>Links</topic><topic>Machine learning</topic><topic>Network topologies</topic><topic>Neural networks</topic><topic>pinning control</topic><topic>Routing</topic><topic>software-defined networking</topic><topic>Traffic control</topic><topic>Traffic engineering</topic><topic>Traffic information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Penghao</creatorcontrib><creatorcontrib>Lan, Julong</creatorcontrib><creatorcontrib>Li, Junfei</creatorcontrib><creatorcontrib>Zhang, Jianpeng</creatorcontrib><creatorcontrib>Hu, Yuxiang</creatorcontrib><creatorcontrib>Guo, Zehua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Penghao</au><au>Lan, Julong</au><au>Li, Junfei</au><au>Zhang, Jianpeng</au><au>Hu, Yuxiang</au><au>Guo, Zehua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Scalable Deep Reinforcement Learning Approach for Traffic Engineering Based on Link Control</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2021-01</date><risdate>2021</risdate><volume>25</volume><issue>1</issue><spage>171</spage><epage>175</epage><pages>171-175</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>As modern communication networks are growing more complicated and dynamic, designing a good Traffic Engineering (TE) policy becomes difficult due to the complexity of solving the optimal traffic scheduling problem. Deep Reinforcement Learning (DRL) provides us with a chance to design a model-free TE scheme through machine learning. However, existing DRL-based TE solutions cannot be applied to large networks. In this article, we propose to combine the control theory and DRL to design a TE scheme. Our proposed scheme ScaleDRL employs the idea from the pinning control theory to select a subset of links in the network and name them critical links. Based on the traffic distribution information, we use a DRL algorithm to dynamically adjust the link weights for the critical links. Through a weighted shortest path algorithm, the forwarding paths of the flows can be dynamically adjusted. The packet-level simulation shows that ScaleDRL reduces the average end-to-end transmission delay by up to 39% compared to the state-of-the-art in different network topologies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2020.3022064</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7314-410X</orcidid><orcidid>https://orcid.org/0000-0002-8606-9337</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2021-01, Vol.25 (1), p.171-175
issn 1089-7798
1558-2558
language eng
recordid cdi_proquest_journals_2477247755
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Communication networks
Control theory
Deep learning
Deep reinforcement learning
Heuristic algorithms
Learning (artificial intelligence)
Links
Machine learning
Network topologies
Neural networks
pinning control
Routing
software-defined networking
Traffic control
Traffic engineering
Traffic information
title A Scalable Deep Reinforcement Learning Approach for Traffic Engineering Based on Link Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Scalable%20Deep%20Reinforcement%20Learning%20Approach%20for%20Traffic%20Engineering%20Based%20on%20Link%20Control&rft.jtitle=IEEE%20communications%20letters&rft.au=Sun,%20Penghao&rft.date=2021-01&rft.volume=25&rft.issue=1&rft.spage=171&rft.epage=175&rft.pages=171-175&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2020.3022064&rft_dat=%3Cproquest_cross%3E2477247755%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-6522a5f9fe9e20dc93b6f7e035ddbedf8de7447d1d065158453a1bea1b5b09013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477247755&rft_id=info:pmid/&rft_ieee_id=9187430&rfr_iscdi=true