Loading…

Scattering of Low-Frequency Elastic Waves in An Infinite Kirchhoff Plate

For a small frequency, scattering of waves propagating along a Kirchhoff plate in the shape of locally perturbed strip with traction-free edges is studied. An asymptotic analysis shows that both, bending and twisting, waves do not in main detect distortion of the originally straight edges, that is t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-02, Vol.252 (5), p.664-686
Main Author: Nazarov, S. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3246-2a56b9d0f0e9a67693121f066f193227178d6ff94318c21ce5e784b23d8b345a3
container_end_page 686
container_issue 5
container_start_page 664
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 252
creator Nazarov, S. A.
description For a small frequency, scattering of waves propagating along a Kirchhoff plate in the shape of locally perturbed strip with traction-free edges is studied. An asymptotic analysis shows that both, bending and twisting, waves do not in main detect distortion of the originally straight edges, that is the transmission coefficient differs a little from 1 while other scattering coefficients become small. In other words, an effect similar to the Weinstein anomalies in an acoustic waveguide is observed. Asymptotic procedures are based on a detailed investigation of the spectrum of an auxiliary operator pencil and the corresponding stationary problem. Justification of the derived asymptotic expansions is performed by means of the technique of weighted spaces with detached asymptotics.
doi_str_mv 10.1007/s10958-021-05189-6
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2477264354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651497268</galeid><sourcerecordid>A651497268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3246-2a56b9d0f0e9a67693121f066f193227178d6ff94318c21ce5e784b23d8b345a3</originalsourceid><addsrcrecordid>eNp9kV1rUzEYgA-i4Jz-Aa8CXnmRLd8fl2VsrqygOMXLkKZvuozTnJqk0_17MyuMQpFcJITnSUKeYXhPyRklRJ9XSqw0mDCKiaTGYvViOKFSc2y0lS_7mmiGOdfi9fCm1nvSJWX4yXB9G3xrUFJeoymixfQLXxX4uYMcHtHl6GtLAf3wD1BRymiW0TzHlFMDdJNKuLubYkRfRt_g7fAq-rHCu3_z6fD96vLbxTVefP40v5gtcOBMKMy8VEu7IpGA9UoryymjkSgVqeWMaarNSsVoBacmMBpAgjZiyfjKLLmQnp8OH_bnbsvUn1mbu592JfcrHRNaMyW4FM_U2o_gUo5TKz5sUg1upiQVtoOmU_gItYYMxY9Thpj69gF_doTvYwWbFI4KHw-EzjT43dZ-V6ub3349ZNmeDWWqtUB025I2vjw6StxTZLeP7Hpk9zeyU13ie6lunxJCef6N_1h_AF90pLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477264354</pqid></control><display><type>article</type><title>Scattering of Low-Frequency Elastic Waves in An Infinite Kirchhoff Plate</title><source>Springer Link</source><creator>Nazarov, S. A.</creator><creatorcontrib>Nazarov, S. A.</creatorcontrib><description>For a small frequency, scattering of waves propagating along a Kirchhoff plate in the shape of locally perturbed strip with traction-free edges is studied. An asymptotic analysis shows that both, bending and twisting, waves do not in main detect distortion of the originally straight edges, that is the transmission coefficient differs a little from 1 while other scattering coefficients become small. In other words, an effect similar to the Weinstein anomalies in an acoustic waveguide is observed. Asymptotic procedures are based on a detailed investigation of the spectrum of an auxiliary operator pencil and the corresponding stationary problem. Justification of the derived asymptotic expansions is performed by means of the technique of weighted spaces with detached asymptotics.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05189-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acoustic waveguides ; Anomalies ; Asymptotic methods ; Asymptotic series ; Elastic scattering ; Elastic waves ; Mathematics ; Mathematics and Statistics ; Scattering coefficient ; Twisting ; Wave propagation ; Waveguides</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-02, Vol.252 (5), p.664-686</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3246-2a56b9d0f0e9a67693121f066f193227178d6ff94318c21ce5e784b23d8b345a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nazarov, S. A.</creatorcontrib><title>Scattering of Low-Frequency Elastic Waves in An Infinite Kirchhoff Plate</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>For a small frequency, scattering of waves propagating along a Kirchhoff plate in the shape of locally perturbed strip with traction-free edges is studied. An asymptotic analysis shows that both, bending and twisting, waves do not in main detect distortion of the originally straight edges, that is the transmission coefficient differs a little from 1 while other scattering coefficients become small. In other words, an effect similar to the Weinstein anomalies in an acoustic waveguide is observed. Asymptotic procedures are based on a detailed investigation of the spectrum of an auxiliary operator pencil and the corresponding stationary problem. Justification of the derived asymptotic expansions is performed by means of the technique of weighted spaces with detached asymptotics.</description><subject>Acoustic waveguides</subject><subject>Anomalies</subject><subject>Asymptotic methods</subject><subject>Asymptotic series</subject><subject>Elastic scattering</subject><subject>Elastic waves</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Scattering coefficient</subject><subject>Twisting</subject><subject>Wave propagation</subject><subject>Waveguides</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rUzEYgA-i4Jz-Aa8CXnmRLd8fl2VsrqygOMXLkKZvuozTnJqk0_17MyuMQpFcJITnSUKeYXhPyRklRJ9XSqw0mDCKiaTGYvViOKFSc2y0lS_7mmiGOdfi9fCm1nvSJWX4yXB9G3xrUFJeoymixfQLXxX4uYMcHtHl6GtLAf3wD1BRymiW0TzHlFMDdJNKuLubYkRfRt_g7fAq-rHCu3_z6fD96vLbxTVefP40v5gtcOBMKMy8VEu7IpGA9UoryymjkSgVqeWMaarNSsVoBacmMBpAgjZiyfjKLLmQnp8OH_bnbsvUn1mbu592JfcrHRNaMyW4FM_U2o_gUo5TKz5sUg1upiQVtoOmU_gItYYMxY9Thpj69gF_doTvYwWbFI4KHw-EzjT43dZ-V6ub3349ZNmeDWWqtUB025I2vjw6StxTZLeP7Hpk9zeyU13ie6lunxJCef6N_1h_AF90pLg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Nazarov, S. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210201</creationdate><title>Scattering of Low-Frequency Elastic Waves in An Infinite Kirchhoff Plate</title><author>Nazarov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3246-2a56b9d0f0e9a67693121f066f193227178d6ff94318c21ce5e784b23d8b345a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic waveguides</topic><topic>Anomalies</topic><topic>Asymptotic methods</topic><topic>Asymptotic series</topic><topic>Elastic scattering</topic><topic>Elastic waves</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Scattering coefficient</topic><topic>Twisting</topic><topic>Wave propagation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazarov, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazarov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattering of Low-Frequency Elastic Waves in An Infinite Kirchhoff Plate</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>252</volume><issue>5</issue><spage>664</spage><epage>686</epage><pages>664-686</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>For a small frequency, scattering of waves propagating along a Kirchhoff plate in the shape of locally perturbed strip with traction-free edges is studied. An asymptotic analysis shows that both, bending and twisting, waves do not in main detect distortion of the originally straight edges, that is the transmission coefficient differs a little from 1 while other scattering coefficients become small. In other words, an effect similar to the Weinstein anomalies in an acoustic waveguide is observed. Asymptotic procedures are based on a detailed investigation of the spectrum of an auxiliary operator pencil and the corresponding stationary problem. Justification of the derived asymptotic expansions is performed by means of the technique of weighted spaces with detached asymptotics.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05189-6</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2021-02, Vol.252 (5), p.664-686
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2477264354
source Springer Link
subjects Acoustic waveguides
Anomalies
Asymptotic methods
Asymptotic series
Elastic scattering
Elastic waves
Mathematics
Mathematics and Statistics
Scattering coefficient
Twisting
Wave propagation
Waveguides
title Scattering of Low-Frequency Elastic Waves in An Infinite Kirchhoff Plate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattering%20of%20Low-Frequency%20Elastic%20Waves%20in%20An%20Infinite%20Kirchhoff%20Plate&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Nazarov,%20S.%20A.&rft.date=2021-02-01&rft.volume=252&rft.issue=5&rft.spage=664&rft.epage=686&rft.pages=664-686&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05189-6&rft_dat=%3Cgale_proqu%3EA651497268%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3246-2a56b9d0f0e9a67693121f066f193227178d6ff94318c21ce5e784b23d8b345a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477264354&rft_id=info:pmid/&rft_galeid=A651497268&rfr_iscdi=true