Loading…
Scattering of Low-Frequency Elastic Waves in An Infinite Kirchhoff Plate
For a small frequency, scattering of waves propagating along a Kirchhoff plate in the shape of locally perturbed strip with traction-free edges is studied. An asymptotic analysis shows that both, bending and twisting, waves do not in main detect distortion of the originally straight edges, that is t...
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-02, Vol.252 (5), p.664-686 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3246-2a56b9d0f0e9a67693121f066f193227178d6ff94318c21ce5e784b23d8b345a3 |
container_end_page | 686 |
container_issue | 5 |
container_start_page | 664 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 252 |
creator | Nazarov, S. A. |
description | For a small frequency, scattering of waves propagating along a Kirchhoff plate in the shape of locally perturbed strip with traction-free edges is studied. An asymptotic analysis shows that both, bending and twisting, waves do not in main detect distortion of the originally straight edges, that is the transmission coefficient differs a little from 1 while other scattering coefficients become small. In other words, an effect similar to the Weinstein anomalies in an acoustic waveguide is observed. Asymptotic procedures are based on a detailed investigation of the spectrum of an auxiliary operator pencil and the corresponding stationary problem. Justification of the derived asymptotic expansions is performed by means of the technique of weighted spaces with detached asymptotics. |
doi_str_mv | 10.1007/s10958-021-05189-6 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2477264354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651497268</galeid><sourcerecordid>A651497268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3246-2a56b9d0f0e9a67693121f066f193227178d6ff94318c21ce5e784b23d8b345a3</originalsourceid><addsrcrecordid>eNp9kV1rUzEYgA-i4Jz-Aa8CXnmRLd8fl2VsrqygOMXLkKZvuozTnJqk0_17MyuMQpFcJITnSUKeYXhPyRklRJ9XSqw0mDCKiaTGYvViOKFSc2y0lS_7mmiGOdfi9fCm1nvSJWX4yXB9G3xrUFJeoymixfQLXxX4uYMcHtHl6GtLAf3wD1BRymiW0TzHlFMDdJNKuLubYkRfRt_g7fAq-rHCu3_z6fD96vLbxTVefP40v5gtcOBMKMy8VEu7IpGA9UoryymjkSgVqeWMaarNSsVoBacmMBpAgjZiyfjKLLmQnp8OH_bnbsvUn1mbu592JfcrHRNaMyW4FM_U2o_gUo5TKz5sUg1upiQVtoOmU_gItYYMxY9Thpj69gF_doTvYwWbFI4KHw-EzjT43dZ-V6ub3349ZNmeDWWqtUB025I2vjw6StxTZLeP7Hpk9zeyU13ie6lunxJCef6N_1h_AF90pLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477264354</pqid></control><display><type>article</type><title>Scattering of Low-Frequency Elastic Waves in An Infinite Kirchhoff Plate</title><source>Springer Link</source><creator>Nazarov, S. A.</creator><creatorcontrib>Nazarov, S. A.</creatorcontrib><description>For a small frequency, scattering of waves propagating along a Kirchhoff plate in the shape of locally perturbed strip with traction-free edges is studied. An asymptotic analysis shows that both, bending and twisting, waves do not in main detect distortion of the originally straight edges, that is the transmission coefficient differs a little from 1 while other scattering coefficients become small. In other words, an effect similar to the Weinstein anomalies in an acoustic waveguide is observed. Asymptotic procedures are based on a detailed investigation of the spectrum of an auxiliary operator pencil and the corresponding stationary problem. Justification of the derived asymptotic expansions is performed by means of the technique of weighted spaces with detached asymptotics.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05189-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acoustic waveguides ; Anomalies ; Asymptotic methods ; Asymptotic series ; Elastic scattering ; Elastic waves ; Mathematics ; Mathematics and Statistics ; Scattering coefficient ; Twisting ; Wave propagation ; Waveguides</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-02, Vol.252 (5), p.664-686</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3246-2a56b9d0f0e9a67693121f066f193227178d6ff94318c21ce5e784b23d8b345a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nazarov, S. A.</creatorcontrib><title>Scattering of Low-Frequency Elastic Waves in An Infinite Kirchhoff Plate</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>For a small frequency, scattering of waves propagating along a Kirchhoff plate in the shape of locally perturbed strip with traction-free edges is studied. An asymptotic analysis shows that both, bending and twisting, waves do not in main detect distortion of the originally straight edges, that is the transmission coefficient differs a little from 1 while other scattering coefficients become small. In other words, an effect similar to the Weinstein anomalies in an acoustic waveguide is observed. Asymptotic procedures are based on a detailed investigation of the spectrum of an auxiliary operator pencil and the corresponding stationary problem. Justification of the derived asymptotic expansions is performed by means of the technique of weighted spaces with detached asymptotics.</description><subject>Acoustic waveguides</subject><subject>Anomalies</subject><subject>Asymptotic methods</subject><subject>Asymptotic series</subject><subject>Elastic scattering</subject><subject>Elastic waves</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Scattering coefficient</subject><subject>Twisting</subject><subject>Wave propagation</subject><subject>Waveguides</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rUzEYgA-i4Jz-Aa8CXnmRLd8fl2VsrqygOMXLkKZvuozTnJqk0_17MyuMQpFcJITnSUKeYXhPyRklRJ9XSqw0mDCKiaTGYvViOKFSc2y0lS_7mmiGOdfi9fCm1nvSJWX4yXB9G3xrUFJeoymixfQLXxX4uYMcHtHl6GtLAf3wD1BRymiW0TzHlFMDdJNKuLubYkRfRt_g7fAq-rHCu3_z6fD96vLbxTVefP40v5gtcOBMKMy8VEu7IpGA9UoryymjkSgVqeWMaarNSsVoBacmMBpAgjZiyfjKLLmQnp8OH_bnbsvUn1mbu592JfcrHRNaMyW4FM_U2o_gUo5TKz5sUg1upiQVtoOmU_gItYYMxY9Thpj69gF_doTvYwWbFI4KHw-EzjT43dZ-V6ub3349ZNmeDWWqtUB025I2vjw6StxTZLeP7Hpk9zeyU13ie6lunxJCef6N_1h_AF90pLg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Nazarov, S. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210201</creationdate><title>Scattering of Low-Frequency Elastic Waves in An Infinite Kirchhoff Plate</title><author>Nazarov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3246-2a56b9d0f0e9a67693121f066f193227178d6ff94318c21ce5e784b23d8b345a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic waveguides</topic><topic>Anomalies</topic><topic>Asymptotic methods</topic><topic>Asymptotic series</topic><topic>Elastic scattering</topic><topic>Elastic waves</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Scattering coefficient</topic><topic>Twisting</topic><topic>Wave propagation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazarov, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazarov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattering of Low-Frequency Elastic Waves in An Infinite Kirchhoff Plate</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>252</volume><issue>5</issue><spage>664</spage><epage>686</epage><pages>664-686</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>For a small frequency, scattering of waves propagating along a Kirchhoff plate in the shape of locally perturbed strip with traction-free edges is studied. An asymptotic analysis shows that both, bending and twisting, waves do not in main detect distortion of the originally straight edges, that is the transmission coefficient differs a little from 1 while other scattering coefficients become small. In other words, an effect similar to the Weinstein anomalies in an acoustic waveguide is observed. Asymptotic procedures are based on a detailed investigation of the spectrum of an auxiliary operator pencil and the corresponding stationary problem. Justification of the derived asymptotic expansions is performed by means of the technique of weighted spaces with detached asymptotics.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05189-6</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2021-02, Vol.252 (5), p.664-686 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2477264354 |
source | Springer Link |
subjects | Acoustic waveguides Anomalies Asymptotic methods Asymptotic series Elastic scattering Elastic waves Mathematics Mathematics and Statistics Scattering coefficient Twisting Wave propagation Waveguides |
title | Scattering of Low-Frequency Elastic Waves in An Infinite Kirchhoff Plate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattering%20of%20Low-Frequency%20Elastic%20Waves%20in%20An%20Infinite%20Kirchhoff%20Plate&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Nazarov,%20S.%20A.&rft.date=2021-02-01&rft.volume=252&rft.issue=5&rft.spage=664&rft.epage=686&rft.pages=664-686&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05189-6&rft_dat=%3Cgale_proqu%3EA651497268%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3246-2a56b9d0f0e9a67693121f066f193227178d6ff94318c21ce5e784b23d8b345a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477264354&rft_id=info:pmid/&rft_galeid=A651497268&rfr_iscdi=true |