Loading…

A new correlation for predicting the thermal conductivity of liquid refrigerants

The material ability to conduct the heat transfer is called thermal conductivity which is defined by Fourier's equation. Thermodynamic data on environmentally acceptable refrigerants have maximum interest for industries to optimize and design equipment of refrigeration such as exchangers and he...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2021, Vol.143 (1), p.795-800
Main Authors: Chen, Zhixiong, Akbari, Mohammadreza, Forouharmanesh, Forouzan, Keshani, Mojtaba, Akbari, Mohammad, Afrand, Masoud, Karimipour, Arash
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-1756e25bc46e4103ab89ebee994c169289162d8632c684174f0f2c529d6328053
cites cdi_FETCH-LOGICAL-c429t-1756e25bc46e4103ab89ebee994c169289162d8632c684174f0f2c529d6328053
container_end_page 800
container_issue 1
container_start_page 795
container_title Journal of thermal analysis and calorimetry
container_volume 143
creator Chen, Zhixiong
Akbari, Mohammadreza
Forouharmanesh, Forouzan
Keshani, Mojtaba
Akbari, Mohammad
Afrand, Masoud
Karimipour, Arash
description The material ability to conduct the heat transfer is called thermal conductivity which is defined by Fourier's equation. Thermodynamic data on environmentally acceptable refrigerants have maximum interest for industries to optimize and design equipment of refrigeration such as exchangers and heat compressors. Because source empirical findings are not applicable for all temperature ranges in industries, correlation approaches are usually preferred. In this research, a novel simple correlation has been developed to predict the thermal conductivity of liquid refrigerants using regression approaches. The variance analysis was applied to study the rationality of regression model. Around 15,874 experimental data of 27 refrigerants were examined to obtain the main effects between the independent parameters. Independent parameters are temperature, boiling and reduced temperatures. The calculations show that the accuracy of the proposed correlation using the average absolute relative deviation (AARD) and root mean square deviation has priority over the previous relations. The results indicated that the AARD of the proposed model is 1.1% which is 68% lower than of the most accurate previous model (Latini–Sotte).
doi_str_mv 10.1007/s10973-019-09238-w
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2477264405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650811105</galeid><sourcerecordid>A650811105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-1756e25bc46e4103ab89ebee994c169289162d8632c684174f0f2c529d6328053</originalsourceid><addsrcrecordid>eNp9kV1rwyAUhsPYYF23P7ArYVe7SKfGGL0sZR-FwsY-rsWak86SJq2adf33s81g9GaIeHh53qOeN0muCR4RjIs7T7AsshQTmWJJM5FuT5IByYVIqaT8NNZZrDnJ8Xly4f0SYywlJoPkZYwa2CLTOge1DrZtUNU6tHZQWhNss0DhE_bbrXQdsabsovxlww61FartprMlclA5uwCnm-Avk7NK1x6ufs9h8vFw_z55SmfPj9PJeJYaRmVISZFzoPncMA6M4EzPhYQ5gJTMEC6pkITTUvCMGi4YKViFK2pyKssoCZxnw-Sm77t27aYDH9Sy7VwTr1SUFQXljB2oUU8tdA3KNlUbnDZxlbCy8TdQ2aiPeY4FIeRguD0yRCbAd1jozns1fXs9ZmnPGtd6H4eg1s6utNspgtU-FtXHomIs6hCL2kZT1pt8hJs4tL93_-P6AceDjrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477264405</pqid></control><display><type>article</type><title>A new correlation for predicting the thermal conductivity of liquid refrigerants</title><source>Springer Link</source><creator>Chen, Zhixiong ; Akbari, Mohammadreza ; Forouharmanesh, Forouzan ; Keshani, Mojtaba ; Akbari, Mohammad ; Afrand, Masoud ; Karimipour, Arash</creator><creatorcontrib>Chen, Zhixiong ; Akbari, Mohammadreza ; Forouharmanesh, Forouzan ; Keshani, Mojtaba ; Akbari, Mohammad ; Afrand, Masoud ; Karimipour, Arash</creatorcontrib><description>The material ability to conduct the heat transfer is called thermal conductivity which is defined by Fourier's equation. Thermodynamic data on environmentally acceptable refrigerants have maximum interest for industries to optimize and design equipment of refrigeration such as exchangers and heat compressors. Because source empirical findings are not applicable for all temperature ranges in industries, correlation approaches are usually preferred. In this research, a novel simple correlation has been developed to predict the thermal conductivity of liquid refrigerants using regression approaches. The variance analysis was applied to study the rationality of regression model. Around 15,874 experimental data of 27 refrigerants were examined to obtain the main effects between the independent parameters. Independent parameters are temperature, boiling and reduced temperatures. The calculations show that the accuracy of the proposed correlation using the average absolute relative deviation (AARD) and root mean square deviation has priority over the previous relations. The results indicated that the AARD of the proposed model is 1.1% which is 68% lower than of the most accurate previous model (Latini–Sotte).</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-019-09238-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Compressors ; Correlation ; Design optimization ; Deviation ; Empirical analysis ; Fourier's equation ; Heat conductivity ; Heat exchangers ; Heat transfer ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Parameters ; Physical Chemistry ; Polymer Sciences ; Refrigerants ; Regression analysis ; Regression models ; Thermal conductivity ; Variance analysis</subject><ispartof>Journal of thermal analysis and calorimetry, 2021, Vol.143 (1), p.795-800</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-1756e25bc46e4103ab89ebee994c169289162d8632c684174f0f2c529d6328053</citedby><cites>FETCH-LOGICAL-c429t-1756e25bc46e4103ab89ebee994c169289162d8632c684174f0f2c529d6328053</cites><orcidid>0000-0003-4841-650X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Zhixiong</creatorcontrib><creatorcontrib>Akbari, Mohammadreza</creatorcontrib><creatorcontrib>Forouharmanesh, Forouzan</creatorcontrib><creatorcontrib>Keshani, Mojtaba</creatorcontrib><creatorcontrib>Akbari, Mohammad</creatorcontrib><creatorcontrib>Afrand, Masoud</creatorcontrib><creatorcontrib>Karimipour, Arash</creatorcontrib><title>A new correlation for predicting the thermal conductivity of liquid refrigerants</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The material ability to conduct the heat transfer is called thermal conductivity which is defined by Fourier's equation. Thermodynamic data on environmentally acceptable refrigerants have maximum interest for industries to optimize and design equipment of refrigeration such as exchangers and heat compressors. Because source empirical findings are not applicable for all temperature ranges in industries, correlation approaches are usually preferred. In this research, a novel simple correlation has been developed to predict the thermal conductivity of liquid refrigerants using regression approaches. The variance analysis was applied to study the rationality of regression model. Around 15,874 experimental data of 27 refrigerants were examined to obtain the main effects between the independent parameters. Independent parameters are temperature, boiling and reduced temperatures. The calculations show that the accuracy of the proposed correlation using the average absolute relative deviation (AARD) and root mean square deviation has priority over the previous relations. The results indicated that the AARD of the proposed model is 1.1% which is 68% lower than of the most accurate previous model (Latini–Sotte).</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Compressors</subject><subject>Correlation</subject><subject>Design optimization</subject><subject>Deviation</subject><subject>Empirical analysis</subject><subject>Fourier's equation</subject><subject>Heat conductivity</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Refrigerants</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Thermal conductivity</subject><subject>Variance analysis</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rwyAUhsPYYF23P7ArYVe7SKfGGL0sZR-FwsY-rsWak86SJq2adf33s81g9GaIeHh53qOeN0muCR4RjIs7T7AsshQTmWJJM5FuT5IByYVIqaT8NNZZrDnJ8Xly4f0SYywlJoPkZYwa2CLTOge1DrZtUNU6tHZQWhNss0DhE_bbrXQdsabsovxlww61FartprMlclA5uwCnm-Avk7NK1x6ufs9h8vFw_z55SmfPj9PJeJYaRmVISZFzoPncMA6M4EzPhYQ5gJTMEC6pkITTUvCMGi4YKViFK2pyKssoCZxnw-Sm77t27aYDH9Sy7VwTr1SUFQXljB2oUU8tdA3KNlUbnDZxlbCy8TdQ2aiPeY4FIeRguD0yRCbAd1jozns1fXs9ZmnPGtd6H4eg1s6utNspgtU-FtXHomIs6hCL2kZT1pt8hJs4tL93_-P6AceDjrQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Chen, Zhixiong</creator><creator>Akbari, Mohammadreza</creator><creator>Forouharmanesh, Forouzan</creator><creator>Keshani, Mojtaba</creator><creator>Akbari, Mohammad</creator><creator>Afrand, Masoud</creator><creator>Karimipour, Arash</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0003-4841-650X</orcidid></search><sort><creationdate>2021</creationdate><title>A new correlation for predicting the thermal conductivity of liquid refrigerants</title><author>Chen, Zhixiong ; Akbari, Mohammadreza ; Forouharmanesh, Forouzan ; Keshani, Mojtaba ; Akbari, Mohammad ; Afrand, Masoud ; Karimipour, Arash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-1756e25bc46e4103ab89ebee994c169289162d8632c684174f0f2c529d6328053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Compressors</topic><topic>Correlation</topic><topic>Design optimization</topic><topic>Deviation</topic><topic>Empirical analysis</topic><topic>Fourier's equation</topic><topic>Heat conductivity</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Refrigerants</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Thermal conductivity</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhixiong</creatorcontrib><creatorcontrib>Akbari, Mohammadreza</creatorcontrib><creatorcontrib>Forouharmanesh, Forouzan</creatorcontrib><creatorcontrib>Keshani, Mojtaba</creatorcontrib><creatorcontrib>Akbari, Mohammad</creatorcontrib><creatorcontrib>Afrand, Masoud</creatorcontrib><creatorcontrib>Karimipour, Arash</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhixiong</au><au>Akbari, Mohammadreza</au><au>Forouharmanesh, Forouzan</au><au>Keshani, Mojtaba</au><au>Akbari, Mohammad</au><au>Afrand, Masoud</au><au>Karimipour, Arash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new correlation for predicting the thermal conductivity of liquid refrigerants</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2021</date><risdate>2021</risdate><volume>143</volume><issue>1</issue><spage>795</spage><epage>800</epage><pages>795-800</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The material ability to conduct the heat transfer is called thermal conductivity which is defined by Fourier's equation. Thermodynamic data on environmentally acceptable refrigerants have maximum interest for industries to optimize and design equipment of refrigeration such as exchangers and heat compressors. Because source empirical findings are not applicable for all temperature ranges in industries, correlation approaches are usually preferred. In this research, a novel simple correlation has been developed to predict the thermal conductivity of liquid refrigerants using regression approaches. The variance analysis was applied to study the rationality of regression model. Around 15,874 experimental data of 27 refrigerants were examined to obtain the main effects between the independent parameters. Independent parameters are temperature, boiling and reduced temperatures. The calculations show that the accuracy of the proposed correlation using the average absolute relative deviation (AARD) and root mean square deviation has priority over the previous relations. The results indicated that the AARD of the proposed model is 1.1% which is 68% lower than of the most accurate previous model (Latini–Sotte).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-019-09238-w</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4841-650X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2021, Vol.143 (1), p.795-800
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2477264405
source Springer Link
subjects Analysis
Analytical Chemistry
Chemistry
Chemistry and Materials Science
Compressors
Correlation
Design optimization
Deviation
Empirical analysis
Fourier's equation
Heat conductivity
Heat exchangers
Heat transfer
Inorganic Chemistry
Measurement Science and Instrumentation
Parameters
Physical Chemistry
Polymer Sciences
Refrigerants
Regression analysis
Regression models
Thermal conductivity
Variance analysis
title A new correlation for predicting the thermal conductivity of liquid refrigerants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20correlation%20for%20predicting%20the%20thermal%20conductivity%20of%20liquid%20refrigerants&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Chen,%20Zhixiong&rft.date=2021&rft.volume=143&rft.issue=1&rft.spage=795&rft.epage=800&rft.pages=795-800&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-019-09238-w&rft_dat=%3Cgale_proqu%3EA650811105%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-1756e25bc46e4103ab89ebee994c169289162d8632c684174f0f2c529d6328053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477264405&rft_id=info:pmid/&rft_galeid=A650811105&rfr_iscdi=true