Loading…
A new correlation for predicting the thermal conductivity of liquid refrigerants
The material ability to conduct the heat transfer is called thermal conductivity which is defined by Fourier's equation. Thermodynamic data on environmentally acceptable refrigerants have maximum interest for industries to optimize and design equipment of refrigeration such as exchangers and he...
Saved in:
Published in: | Journal of thermal analysis and calorimetry 2021, Vol.143 (1), p.795-800 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-1756e25bc46e4103ab89ebee994c169289162d8632c684174f0f2c529d6328053 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-1756e25bc46e4103ab89ebee994c169289162d8632c684174f0f2c529d6328053 |
container_end_page | 800 |
container_issue | 1 |
container_start_page | 795 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 143 |
creator | Chen, Zhixiong Akbari, Mohammadreza Forouharmanesh, Forouzan Keshani, Mojtaba Akbari, Mohammad Afrand, Masoud Karimipour, Arash |
description | The material ability to conduct the heat transfer is called thermal conductivity which is defined by Fourier's equation. Thermodynamic data on environmentally acceptable refrigerants have maximum interest for industries to optimize and design equipment of refrigeration such as exchangers and heat compressors. Because source empirical findings are not applicable for all temperature ranges in industries, correlation approaches are usually preferred. In this research, a novel simple correlation has been developed to predict the thermal conductivity of liquid refrigerants using regression approaches. The variance analysis was applied to study the rationality of regression model. Around 15,874 experimental data of 27 refrigerants were examined to obtain the main effects between the independent parameters. Independent parameters are temperature, boiling and reduced temperatures. The calculations show that the accuracy of the proposed correlation using the average absolute relative deviation (AARD) and root mean square deviation has priority over the previous relations. The results indicated that the AARD of the proposed model is 1.1% which is 68% lower than of the most accurate previous model (Latini–Sotte). |
doi_str_mv | 10.1007/s10973-019-09238-w |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2477264405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650811105</galeid><sourcerecordid>A650811105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-1756e25bc46e4103ab89ebee994c169289162d8632c684174f0f2c529d6328053</originalsourceid><addsrcrecordid>eNp9kV1rwyAUhsPYYF23P7ArYVe7SKfGGL0sZR-FwsY-rsWak86SJq2adf33s81g9GaIeHh53qOeN0muCR4RjIs7T7AsshQTmWJJM5FuT5IByYVIqaT8NNZZrDnJ8Xly4f0SYywlJoPkZYwa2CLTOge1DrZtUNU6tHZQWhNss0DhE_bbrXQdsabsovxlww61FartprMlclA5uwCnm-Avk7NK1x6ufs9h8vFw_z55SmfPj9PJeJYaRmVISZFzoPncMA6M4EzPhYQ5gJTMEC6pkITTUvCMGi4YKViFK2pyKssoCZxnw-Sm77t27aYDH9Sy7VwTr1SUFQXljB2oUU8tdA3KNlUbnDZxlbCy8TdQ2aiPeY4FIeRguD0yRCbAd1jozns1fXs9ZmnPGtd6H4eg1s6utNspgtU-FtXHomIs6hCL2kZT1pt8hJs4tL93_-P6AceDjrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477264405</pqid></control><display><type>article</type><title>A new correlation for predicting the thermal conductivity of liquid refrigerants</title><source>Springer Link</source><creator>Chen, Zhixiong ; Akbari, Mohammadreza ; Forouharmanesh, Forouzan ; Keshani, Mojtaba ; Akbari, Mohammad ; Afrand, Masoud ; Karimipour, Arash</creator><creatorcontrib>Chen, Zhixiong ; Akbari, Mohammadreza ; Forouharmanesh, Forouzan ; Keshani, Mojtaba ; Akbari, Mohammad ; Afrand, Masoud ; Karimipour, Arash</creatorcontrib><description>The material ability to conduct the heat transfer is called thermal conductivity which is defined by Fourier's equation. Thermodynamic data on environmentally acceptable refrigerants have maximum interest for industries to optimize and design equipment of refrigeration such as exchangers and heat compressors. Because source empirical findings are not applicable for all temperature ranges in industries, correlation approaches are usually preferred. In this research, a novel simple correlation has been developed to predict the thermal conductivity of liquid refrigerants using regression approaches. The variance analysis was applied to study the rationality of regression model. Around 15,874 experimental data of 27 refrigerants were examined to obtain the main effects between the independent parameters. Independent parameters are temperature, boiling and reduced temperatures. The calculations show that the accuracy of the proposed correlation using the average absolute relative deviation (AARD) and root mean square deviation has priority over the previous relations. The results indicated that the AARD of the proposed model is 1.1% which is 68% lower than of the most accurate previous model (Latini–Sotte).</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-019-09238-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Compressors ; Correlation ; Design optimization ; Deviation ; Empirical analysis ; Fourier's equation ; Heat conductivity ; Heat exchangers ; Heat transfer ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Parameters ; Physical Chemistry ; Polymer Sciences ; Refrigerants ; Regression analysis ; Regression models ; Thermal conductivity ; Variance analysis</subject><ispartof>Journal of thermal analysis and calorimetry, 2021, Vol.143 (1), p.795-800</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-1756e25bc46e4103ab89ebee994c169289162d8632c684174f0f2c529d6328053</citedby><cites>FETCH-LOGICAL-c429t-1756e25bc46e4103ab89ebee994c169289162d8632c684174f0f2c529d6328053</cites><orcidid>0000-0003-4841-650X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Zhixiong</creatorcontrib><creatorcontrib>Akbari, Mohammadreza</creatorcontrib><creatorcontrib>Forouharmanesh, Forouzan</creatorcontrib><creatorcontrib>Keshani, Mojtaba</creatorcontrib><creatorcontrib>Akbari, Mohammad</creatorcontrib><creatorcontrib>Afrand, Masoud</creatorcontrib><creatorcontrib>Karimipour, Arash</creatorcontrib><title>A new correlation for predicting the thermal conductivity of liquid refrigerants</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The material ability to conduct the heat transfer is called thermal conductivity which is defined by Fourier's equation. Thermodynamic data on environmentally acceptable refrigerants have maximum interest for industries to optimize and design equipment of refrigeration such as exchangers and heat compressors. Because source empirical findings are not applicable for all temperature ranges in industries, correlation approaches are usually preferred. In this research, a novel simple correlation has been developed to predict the thermal conductivity of liquid refrigerants using regression approaches. The variance analysis was applied to study the rationality of regression model. Around 15,874 experimental data of 27 refrigerants were examined to obtain the main effects between the independent parameters. Independent parameters are temperature, boiling and reduced temperatures. The calculations show that the accuracy of the proposed correlation using the average absolute relative deviation (AARD) and root mean square deviation has priority over the previous relations. The results indicated that the AARD of the proposed model is 1.1% which is 68% lower than of the most accurate previous model (Latini–Sotte).</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Compressors</subject><subject>Correlation</subject><subject>Design optimization</subject><subject>Deviation</subject><subject>Empirical analysis</subject><subject>Fourier's equation</subject><subject>Heat conductivity</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Refrigerants</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Thermal conductivity</subject><subject>Variance analysis</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rwyAUhsPYYF23P7ArYVe7SKfGGL0sZR-FwsY-rsWak86SJq2adf33s81g9GaIeHh53qOeN0muCR4RjIs7T7AsshQTmWJJM5FuT5IByYVIqaT8NNZZrDnJ8Xly4f0SYywlJoPkZYwa2CLTOge1DrZtUNU6tHZQWhNss0DhE_bbrXQdsabsovxlww61FartprMlclA5uwCnm-Avk7NK1x6ufs9h8vFw_z55SmfPj9PJeJYaRmVISZFzoPncMA6M4EzPhYQ5gJTMEC6pkITTUvCMGi4YKViFK2pyKssoCZxnw-Sm77t27aYDH9Sy7VwTr1SUFQXljB2oUU8tdA3KNlUbnDZxlbCy8TdQ2aiPeY4FIeRguD0yRCbAd1jozns1fXs9ZmnPGtd6H4eg1s6utNspgtU-FtXHomIs6hCL2kZT1pt8hJs4tL93_-P6AceDjrQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Chen, Zhixiong</creator><creator>Akbari, Mohammadreza</creator><creator>Forouharmanesh, Forouzan</creator><creator>Keshani, Mojtaba</creator><creator>Akbari, Mohammad</creator><creator>Afrand, Masoud</creator><creator>Karimipour, Arash</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0003-4841-650X</orcidid></search><sort><creationdate>2021</creationdate><title>A new correlation for predicting the thermal conductivity of liquid refrigerants</title><author>Chen, Zhixiong ; Akbari, Mohammadreza ; Forouharmanesh, Forouzan ; Keshani, Mojtaba ; Akbari, Mohammad ; Afrand, Masoud ; Karimipour, Arash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-1756e25bc46e4103ab89ebee994c169289162d8632c684174f0f2c529d6328053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Compressors</topic><topic>Correlation</topic><topic>Design optimization</topic><topic>Deviation</topic><topic>Empirical analysis</topic><topic>Fourier's equation</topic><topic>Heat conductivity</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Refrigerants</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Thermal conductivity</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhixiong</creatorcontrib><creatorcontrib>Akbari, Mohammadreza</creatorcontrib><creatorcontrib>Forouharmanesh, Forouzan</creatorcontrib><creatorcontrib>Keshani, Mojtaba</creatorcontrib><creatorcontrib>Akbari, Mohammad</creatorcontrib><creatorcontrib>Afrand, Masoud</creatorcontrib><creatorcontrib>Karimipour, Arash</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhixiong</au><au>Akbari, Mohammadreza</au><au>Forouharmanesh, Forouzan</au><au>Keshani, Mojtaba</au><au>Akbari, Mohammad</au><au>Afrand, Masoud</au><au>Karimipour, Arash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new correlation for predicting the thermal conductivity of liquid refrigerants</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2021</date><risdate>2021</risdate><volume>143</volume><issue>1</issue><spage>795</spage><epage>800</epage><pages>795-800</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The material ability to conduct the heat transfer is called thermal conductivity which is defined by Fourier's equation. Thermodynamic data on environmentally acceptable refrigerants have maximum interest for industries to optimize and design equipment of refrigeration such as exchangers and heat compressors. Because source empirical findings are not applicable for all temperature ranges in industries, correlation approaches are usually preferred. In this research, a novel simple correlation has been developed to predict the thermal conductivity of liquid refrigerants using regression approaches. The variance analysis was applied to study the rationality of regression model. Around 15,874 experimental data of 27 refrigerants were examined to obtain the main effects between the independent parameters. Independent parameters are temperature, boiling and reduced temperatures. The calculations show that the accuracy of the proposed correlation using the average absolute relative deviation (AARD) and root mean square deviation has priority over the previous relations. The results indicated that the AARD of the proposed model is 1.1% which is 68% lower than of the most accurate previous model (Latini–Sotte).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-019-09238-w</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4841-650X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2021, Vol.143 (1), p.795-800 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2477264405 |
source | Springer Link |
subjects | Analysis Analytical Chemistry Chemistry Chemistry and Materials Science Compressors Correlation Design optimization Deviation Empirical analysis Fourier's equation Heat conductivity Heat exchangers Heat transfer Inorganic Chemistry Measurement Science and Instrumentation Parameters Physical Chemistry Polymer Sciences Refrigerants Regression analysis Regression models Thermal conductivity Variance analysis |
title | A new correlation for predicting the thermal conductivity of liquid refrigerants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20correlation%20for%20predicting%20the%20thermal%20conductivity%20of%20liquid%20refrigerants&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Chen,%20Zhixiong&rft.date=2021&rft.volume=143&rft.issue=1&rft.spage=795&rft.epage=800&rft.pages=795-800&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-019-09238-w&rft_dat=%3Cgale_proqu%3EA650811105%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-1756e25bc46e4103ab89ebee994c169289162d8632c684174f0f2c529d6328053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477264405&rft_id=info:pmid/&rft_galeid=A650811105&rfr_iscdi=true |