Loading…

Privacy Aspects of Provenance Queries

Given a query result of a big database, why-provenance can be used to calculate the necessary part of this database, consisting of so-called witnesses. If this database consists of personal data, privacy protection has to prevent the publication of these witnesses. This implies a natural conflict of...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-01
Main Authors: Auge, Tanja, Scharlau, Nic, Heuer, Andreas
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Auge, Tanja
Scharlau, Nic
Heuer, Andreas
description Given a query result of a big database, why-provenance can be used to calculate the necessary part of this database, consisting of so-called witnesses. If this database consists of personal data, privacy protection has to prevent the publication of these witnesses. This implies a natural conflict of interest between publishing original data (provenance) and protecting these data (privacy). In this paper, privacy goes beyond the concept of personal data protection. The paper gives an extended definition of privacy as intellectual property protection. If the provenance information is not sufficient to reconstruct a query result, additional data such as witnesses or provenance polynomials have to be published to guarantee traceability. Nevertheless, publishing this provenance information might be a problem if (significantly) more tuples than necessary can be derived from the original database. At this point, it is already possible to violate privacy policies, provided that quasi identifiers are included in this provenance information. With this poster, we point out fundamental problems and discuss first proposals for solutions.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2477383162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477383162</sourcerecordid><originalsourceid>FETCH-proquest_journals_24773831623</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDSjKLEtMrlRwLC5ITS4pVshPUwgoyi9LzUvMS05VCCxNLcpMLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjE3NzYwtjQzMjY-JUAQD9Ay71</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477383162</pqid></control><display><type>article</type><title>Privacy Aspects of Provenance Queries</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Auge, Tanja ; Scharlau, Nic ; Heuer, Andreas</creator><creatorcontrib>Auge, Tanja ; Scharlau, Nic ; Heuer, Andreas</creatorcontrib><description>Given a query result of a big database, why-provenance can be used to calculate the necessary part of this database, consisting of so-called witnesses. If this database consists of personal data, privacy protection has to prevent the publication of these witnesses. This implies a natural conflict of interest between publishing original data (provenance) and protecting these data (privacy). In this paper, privacy goes beyond the concept of personal data protection. The paper gives an extended definition of privacy as intellectual property protection. If the provenance information is not sufficient to reconstruct a query result, additional data such as witnesses or provenance polynomials have to be published to guarantee traceability. Nevertheless, publishing this provenance information might be a problem if (significantly) more tuples than necessary can be derived from the original database. At this point, it is already possible to violate privacy policies, provided that quasi identifiers are included in this provenance information. With this poster, we point out fundamental problems and discuss first proposals for solutions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mathematical analysis ; Polynomials ; Privacy</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2477383162?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Auge, Tanja</creatorcontrib><creatorcontrib>Scharlau, Nic</creatorcontrib><creatorcontrib>Heuer, Andreas</creatorcontrib><title>Privacy Aspects of Provenance Queries</title><title>arXiv.org</title><description>Given a query result of a big database, why-provenance can be used to calculate the necessary part of this database, consisting of so-called witnesses. If this database consists of personal data, privacy protection has to prevent the publication of these witnesses. This implies a natural conflict of interest between publishing original data (provenance) and protecting these data (privacy). In this paper, privacy goes beyond the concept of personal data protection. The paper gives an extended definition of privacy as intellectual property protection. If the provenance information is not sufficient to reconstruct a query result, additional data such as witnesses or provenance polynomials have to be published to guarantee traceability. Nevertheless, publishing this provenance information might be a problem if (significantly) more tuples than necessary can be derived from the original database. At this point, it is already possible to violate privacy policies, provided that quasi identifiers are included in this provenance information. With this poster, we point out fundamental problems and discuss first proposals for solutions.</description><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Privacy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDSjKLEtMrlRwLC5ITS4pVshPUwgoyi9LzUvMS05VCCxNLcpMLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjE3NzYwtjQzMjY-JUAQD9Ay71</recordid><startdate>20210112</startdate><enddate>20210112</enddate><creator>Auge, Tanja</creator><creator>Scharlau, Nic</creator><creator>Heuer, Andreas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210112</creationdate><title>Privacy Aspects of Provenance Queries</title><author>Auge, Tanja ; Scharlau, Nic ; Heuer, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24773831623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Privacy</topic><toplevel>online_resources</toplevel><creatorcontrib>Auge, Tanja</creatorcontrib><creatorcontrib>Scharlau, Nic</creatorcontrib><creatorcontrib>Heuer, Andreas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auge, Tanja</au><au>Scharlau, Nic</au><au>Heuer, Andreas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Privacy Aspects of Provenance Queries</atitle><jtitle>arXiv.org</jtitle><date>2021-01-12</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Given a query result of a big database, why-provenance can be used to calculate the necessary part of this database, consisting of so-called witnesses. If this database consists of personal data, privacy protection has to prevent the publication of these witnesses. This implies a natural conflict of interest between publishing original data (provenance) and protecting these data (privacy). In this paper, privacy goes beyond the concept of personal data protection. The paper gives an extended definition of privacy as intellectual property protection. If the provenance information is not sufficient to reconstruct a query result, additional data such as witnesses or provenance polynomials have to be published to guarantee traceability. Nevertheless, publishing this provenance information might be a problem if (significantly) more tuples than necessary can be derived from the original database. At this point, it is already possible to violate privacy policies, provided that quasi identifiers are included in this provenance information. With this poster, we point out fundamental problems and discuss first proposals for solutions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2477383162
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Mathematical analysis
Polynomials
Privacy
title Privacy Aspects of Provenance Queries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Privacy%20Aspects%20of%20Provenance%20Queries&rft.jtitle=arXiv.org&rft.au=Auge,%20Tanja&rft.date=2021-01-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2477383162%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24773831623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477383162&rft_id=info:pmid/&rfr_iscdi=true