Loading…

Automorphism groups of rational elliptic and quasi-elliptic surfaces in all characteristics

We study the groups of automorphisms of rational algebraic surfaces that admit a relatively minimal pencil of curves of arithmetic genus one over an algebraically closed field of arbitrary characteristic. In particular, we classify such surfaces that admit non-trivial automorphisms that act triviall...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-06
Main Authors: Dolgachev, Igor, Gebhard, Martin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dolgachev, Igor
Gebhard, Martin
description We study the groups of automorphisms of rational algebraic surfaces that admit a relatively minimal pencil of curves of arithmetic genus one over an algebraically closed field of arbitrary characteristic. In particular, we classify such surfaces that admit non-trivial automorphisms that act trivially on the Picard group. As an application, we classify classical Enriques surfaces in characteristic \(2\) that admit non-trivial numerically trivial automorphisms.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2477837032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477837032</sourcerecordid><originalsourceid>FETCH-proquest_journals_24778370323</originalsourceid><addsrcrecordid>eNqNjbEKwjAURYMgWLT_8MC5EJPWdBVR_AA3B3nE1KakTZqX_L8dxNnpwjkH7ooVQspD1dZCbFhJNHDOxVGJppEFe5xy8qOPobc0wjv6HAh8BxGT9RM6MM7ZkKwGnF4wZyRb_RDl2KE2BHYCdA50jxF1MtHSomnH1h06MuV3t2x_vdzPtypEP2dD6Tn4HJcTeopaqVYqLoX8r_oAE_dEJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477837032</pqid></control><display><type>article</type><title>Automorphism groups of rational elliptic and quasi-elliptic surfaces in all characteristics</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Dolgachev, Igor ; Gebhard, Martin</creator><creatorcontrib>Dolgachev, Igor ; Gebhard, Martin</creatorcontrib><description>We study the groups of automorphisms of rational algebraic surfaces that admit a relatively minimal pencil of curves of arithmetic genus one over an algebraically closed field of arbitrary characteristic. In particular, we classify such surfaces that admit non-trivial automorphisms that act trivially on the Picard group. As an application, we classify classical Enriques surfaces in characteristic \(2\) that admit non-trivial numerically trivial automorphisms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automorphisms ; Classification</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2477837032?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Dolgachev, Igor</creatorcontrib><creatorcontrib>Gebhard, Martin</creatorcontrib><title>Automorphism groups of rational elliptic and quasi-elliptic surfaces in all characteristics</title><title>arXiv.org</title><description>We study the groups of automorphisms of rational algebraic surfaces that admit a relatively minimal pencil of curves of arithmetic genus one over an algebraically closed field of arbitrary characteristic. In particular, we classify such surfaces that admit non-trivial automorphisms that act trivially on the Picard group. As an application, we classify classical Enriques surfaces in characteristic \(2\) that admit non-trivial numerically trivial automorphisms.</description><subject>Automorphisms</subject><subject>Classification</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjbEKwjAURYMgWLT_8MC5EJPWdBVR_AA3B3nE1KakTZqX_L8dxNnpwjkH7ooVQspD1dZCbFhJNHDOxVGJppEFe5xy8qOPobc0wjv6HAh8BxGT9RM6MM7ZkKwGnF4wZyRb_RDl2KE2BHYCdA50jxF1MtHSomnH1h06MuV3t2x_vdzPtypEP2dD6Tn4HJcTeopaqVYqLoX8r_oAE_dEJA</recordid><startdate>20210624</startdate><enddate>20210624</enddate><creator>Dolgachev, Igor</creator><creator>Gebhard, Martin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210624</creationdate><title>Automorphism groups of rational elliptic and quasi-elliptic surfaces in all characteristics</title><author>Dolgachev, Igor ; Gebhard, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24778370323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automorphisms</topic><topic>Classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Dolgachev, Igor</creatorcontrib><creatorcontrib>Gebhard, Martin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolgachev, Igor</au><au>Gebhard, Martin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Automorphism groups of rational elliptic and quasi-elliptic surfaces in all characteristics</atitle><jtitle>arXiv.org</jtitle><date>2021-06-24</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study the groups of automorphisms of rational algebraic surfaces that admit a relatively minimal pencil of curves of arithmetic genus one over an algebraically closed field of arbitrary characteristic. In particular, we classify such surfaces that admit non-trivial automorphisms that act trivially on the Picard group. As an application, we classify classical Enriques surfaces in characteristic \(2\) that admit non-trivial numerically trivial automorphisms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2477837032
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Automorphisms
Classification
title Automorphism groups of rational elliptic and quasi-elliptic surfaces in all characteristics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A00%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Automorphism%20groups%20of%20rational%20elliptic%20and%20quasi-elliptic%20surfaces%20in%20all%20characteristics&rft.jtitle=arXiv.org&rft.au=Dolgachev,%20Igor&rft.date=2021-06-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2477837032%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24778370323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477837032&rft_id=info:pmid/&rfr_iscdi=true