Loading…
Bose-Hubbard models with on-site and nearest-neighbor interactions: Exactly solvable case
We study the discrete spectrum of the two-particle Schr\"odinger operator \(\hat H_{\mu\lambda}(K),\) \(K\in\mathbb{T}^2,\) associated to the Bose-Hubbard Hamiltonian \(\hat {\mathbb H}_{\mu\lambda}\) of a system of two identical bosons interacting on site and nearest-neighbor sites in the two...
Saved in:
Published in: | arXiv.org 2021-01 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lakaev, Saidakhmat Kholmatov, Shokhrukh Khamidov, Shakhobiddin |
description | We study the discrete spectrum of the two-particle Schr\"odinger operator \(\hat H_{\mu\lambda}(K),\) \(K\in\mathbb{T}^2,\) associated to the Bose-Hubbard Hamiltonian \(\hat {\mathbb H}_{\mu\lambda}\) of a system of two identical bosons interacting on site and nearest-neighbor sites in the two dimensional lattice \(\mathbb{Z}^2\) with interaction magnitudes \(\mu\in\mathbb{R}\) and \(\lambda\in\mathbb{R},\) respectively. We completely describe the spectrum of \(\hat H_{\mu\lambda}(0)\) and establish the optimal lower bound for the number of eigenvalues of \(\hat H_{\mu\lambda}(K)\) outside its essential spectrum for all values of \(K\in\mathbb{T}^2.\) Namely, we partition the \((\mu,\lambda)\)-plane such that in each connected component of the partition the number of bound states of \(\hat H_{\mu\lambda}(K)\) below or above its essential spectrum cannot be less than the corresponding number of bound states of \(\hat H_{\mu\lambda}(0)\) below or above its essential spectrum. |
doi_str_mv | 10.48550/arxiv.2101.05109 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2477837123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477837123</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-7363960e10e11a97801db52377d4ad94bed94d5d375338962e34c9537037281b3</originalsourceid><addsrcrecordid>eNotT8FKAzEUDIJgqf0AbwHPWZO8ZLPrTUu1QsFLL55KsnnaLWuiyW6tf2-gwjAzMPDeDCE3gleq0Zrf2XTqj5UUXFRcC95ekJkEEKxRUl6RRc4HzrmsjdQaZuTtMWZk68k5mzz9jB6HTH_6cU9jYLkfkdrgaUCbMI8sYP-xdzHRPoyYbDf2MeR7ujoVO_zSHIejdQPSzma8Jpfvdsi4-Nc52T6ttss127w-vywfNsxqCcxADW3NURQI25qGC-9KYIxX1rfKYSGvPRgN0LS1RFBdq8FwMLIRDubk9nz2K8XvqZTcHeKUQvm4k8qYBowo8_8ABLlSfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477837123</pqid></control><display><type>article</type><title>Bose-Hubbard models with on-site and nearest-neighbor interactions: Exactly solvable case</title><source>Access via ProQuest (Open Access)</source><creator>Lakaev, Saidakhmat ; Kholmatov, Shokhrukh ; Khamidov, Shakhobiddin</creator><creatorcontrib>Lakaev, Saidakhmat ; Kholmatov, Shokhrukh ; Khamidov, Shakhobiddin</creatorcontrib><description>We study the discrete spectrum of the two-particle Schr\"odinger operator \(\hat H_{\mu\lambda}(K),\) \(K\in\mathbb{T}^2,\) associated to the Bose-Hubbard Hamiltonian \(\hat {\mathbb H}_{\mu\lambda}\) of a system of two identical bosons interacting on site and nearest-neighbor sites in the two dimensional lattice \(\mathbb{Z}^2\) with interaction magnitudes \(\mu\in\mathbb{R}\) and \(\lambda\in\mathbb{R},\) respectively. We completely describe the spectrum of \(\hat H_{\mu\lambda}(0)\) and establish the optimal lower bound for the number of eigenvalues of \(\hat H_{\mu\lambda}(K)\) outside its essential spectrum for all values of \(K\in\mathbb{T}^2.\) Namely, we partition the \((\mu,\lambda)\)-plane such that in each connected component of the partition the number of bound states of \(\hat H_{\mu\lambda}(K)\) below or above its essential spectrum cannot be less than the corresponding number of bound states of \(\hat H_{\mu\lambda}(0)\) below or above its essential spectrum.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2101.05109</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bosons ; Eigenvalues ; Lower bounds ; Partitions</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2477837123?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Lakaev, Saidakhmat</creatorcontrib><creatorcontrib>Kholmatov, Shokhrukh</creatorcontrib><creatorcontrib>Khamidov, Shakhobiddin</creatorcontrib><title>Bose-Hubbard models with on-site and nearest-neighbor interactions: Exactly solvable case</title><title>arXiv.org</title><description>We study the discrete spectrum of the two-particle Schr\"odinger operator \(\hat H_{\mu\lambda}(K),\) \(K\in\mathbb{T}^2,\) associated to the Bose-Hubbard Hamiltonian \(\hat {\mathbb H}_{\mu\lambda}\) of a system of two identical bosons interacting on site and nearest-neighbor sites in the two dimensional lattice \(\mathbb{Z}^2\) with interaction magnitudes \(\mu\in\mathbb{R}\) and \(\lambda\in\mathbb{R},\) respectively. We completely describe the spectrum of \(\hat H_{\mu\lambda}(0)\) and establish the optimal lower bound for the number of eigenvalues of \(\hat H_{\mu\lambda}(K)\) outside its essential spectrum for all values of \(K\in\mathbb{T}^2.\) Namely, we partition the \((\mu,\lambda)\)-plane such that in each connected component of the partition the number of bound states of \(\hat H_{\mu\lambda}(K)\) below or above its essential spectrum cannot be less than the corresponding number of bound states of \(\hat H_{\mu\lambda}(0)\) below or above its essential spectrum.</description><subject>Bosons</subject><subject>Eigenvalues</subject><subject>Lower bounds</subject><subject>Partitions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT8FKAzEUDIJgqf0AbwHPWZO8ZLPrTUu1QsFLL55KsnnaLWuiyW6tf2-gwjAzMPDeDCE3gleq0Zrf2XTqj5UUXFRcC95ekJkEEKxRUl6RRc4HzrmsjdQaZuTtMWZk68k5mzz9jB6HTH_6cU9jYLkfkdrgaUCbMI8sYP-xdzHRPoyYbDf2MeR7ujoVO_zSHIejdQPSzma8Jpfvdsi4-Nc52T6ttss127w-vywfNsxqCcxADW3NURQI25qGC-9KYIxX1rfKYSGvPRgN0LS1RFBdq8FwMLIRDubk9nz2K8XvqZTcHeKUQvm4k8qYBowo8_8ABLlSfA</recordid><startdate>20210113</startdate><enddate>20210113</enddate><creator>Lakaev, Saidakhmat</creator><creator>Kholmatov, Shokhrukh</creator><creator>Khamidov, Shakhobiddin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210113</creationdate><title>Bose-Hubbard models with on-site and nearest-neighbor interactions: Exactly solvable case</title><author>Lakaev, Saidakhmat ; Kholmatov, Shokhrukh ; Khamidov, Shakhobiddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-7363960e10e11a97801db52377d4ad94bed94d5d375338962e34c9537037281b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bosons</topic><topic>Eigenvalues</topic><topic>Lower bounds</topic><topic>Partitions</topic><toplevel>online_resources</toplevel><creatorcontrib>Lakaev, Saidakhmat</creatorcontrib><creatorcontrib>Kholmatov, Shokhrukh</creatorcontrib><creatorcontrib>Khamidov, Shakhobiddin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakaev, Saidakhmat</au><au>Kholmatov, Shokhrukh</au><au>Khamidov, Shakhobiddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bose-Hubbard models with on-site and nearest-neighbor interactions: Exactly solvable case</atitle><jtitle>arXiv.org</jtitle><date>2021-01-13</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study the discrete spectrum of the two-particle Schr\"odinger operator \(\hat H_{\mu\lambda}(K),\) \(K\in\mathbb{T}^2,\) associated to the Bose-Hubbard Hamiltonian \(\hat {\mathbb H}_{\mu\lambda}\) of a system of two identical bosons interacting on site and nearest-neighbor sites in the two dimensional lattice \(\mathbb{Z}^2\) with interaction magnitudes \(\mu\in\mathbb{R}\) and \(\lambda\in\mathbb{R},\) respectively. We completely describe the spectrum of \(\hat H_{\mu\lambda}(0)\) and establish the optimal lower bound for the number of eigenvalues of \(\hat H_{\mu\lambda}(K)\) outside its essential spectrum for all values of \(K\in\mathbb{T}^2.\) Namely, we partition the \((\mu,\lambda)\)-plane such that in each connected component of the partition the number of bound states of \(\hat H_{\mu\lambda}(K)\) below or above its essential spectrum cannot be less than the corresponding number of bound states of \(\hat H_{\mu\lambda}(0)\) below or above its essential spectrum.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2101.05109</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2477837123 |
source | Access via ProQuest (Open Access) |
subjects | Bosons Eigenvalues Lower bounds Partitions |
title | Bose-Hubbard models with on-site and nearest-neighbor interactions: Exactly solvable case |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bose-Hubbard%20models%20with%20on-site%20and%20nearest-neighbor%20interactions:%20Exactly%20solvable%20case&rft.jtitle=arXiv.org&rft.au=Lakaev,%20Saidakhmat&rft.date=2021-01-13&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2101.05109&rft_dat=%3Cproquest%3E2477837123%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-7363960e10e11a97801db52377d4ad94bed94d5d375338962e34c9537037281b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477837123&rft_id=info:pmid/&rfr_iscdi=true |