Loading…
Chiral 4-O-acylterpineol as transdermal permeation enhancers: insights of the enhancement mechanisms of a transdermal enantioselective delivery system for flurbiprofen
In order to devise more effective penetration enhancers, 4-O-acylterpineol derivatives which were expected to be hydrolyzed into nontoxic metabolites by esterase in the living epidermis, were synthesized from 4-terpineol (4-TER) enantiomers and straight chain fatty acids. Their promoting activities...
Saved in:
Published in: | Drug delivery 2020-01, Vol.27 (1), p.723-735 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to devise more effective penetration enhancers, 4-O-acylterpineol derivatives which were expected to be hydrolyzed into nontoxic metabolites by esterase in the living epidermis, were synthesized from 4-terpineol (4-TER) enantiomers and straight chain fatty acids. Their promoting activities on the SR-flurbiprofen and its enantiomers were tested across full-thickness rabbit skin, as well as to correlate under in vitro and in vivo conditions. The permeation studies indicated that both d-4-O-acylterpineol and l-4-O-acylterpineol had significant enhancing effects, interestingly, d-4-O-aclyterpineol had higher enhancing effects than l-4-O-aclyterpineol with the exception of d-4-methyl-1-(1-methylethyl)-3-cyclohexen-1-yl octadec-9-enoate (d-4-T-dC18). The mechanism of 4-O-acylterpineol facilitating the drug penetration across the skin was confirmed by Attenuated total reflection-Fourier transformed infrared spectroscopy (ATR-FTIR) and molecular simulation. The mechanism of penetration enhancers promoting drug release was explored by the in vitro release experiment. Finally, a relative safety skin irritation of enhancers was also investigated by in vivo histological evaluation. The present research suggested that d-4-O-aclyterpineol and l-4-O-aclyterpineol could significantly promote the penetration of SR-flurbiprofen and its enantiomers both in vitro and in vivo, with the superiorities of high flux and low dermal toxicity. |
---|---|
ISSN: | 1071-7544 1521-0464 |
DOI: | 10.1080/10717544.2020.1760403 |