Loading…

Manifold configurations for uniform flow via topology optimisation and flow visualisation

•New topology optimised manifold configurations for uniform cooling with a low-pressure drop.•Performance of compact and adaptable manifold configuration demonstrated experimentally.•Flow visualisation shows the influence of inlet vortices on flow distribution.•Printed test section provides a conven...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2021-01, Vol.183, p.116227, Article 116227
Main Authors: Gilmore, Nicholas, Hassanzadeh-Barforoushi, Amin, Timchenko, Victoria, Menictas, Chris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-847e7126f32714c12dddfc734ed3025773397b0b5d80278d7e97ba7633158ef43
cites cdi_FETCH-LOGICAL-c358t-847e7126f32714c12dddfc734ed3025773397b0b5d80278d7e97ba7633158ef43
container_end_page
container_issue
container_start_page 116227
container_title Applied thermal engineering
container_volume 183
creator Gilmore, Nicholas
Hassanzadeh-Barforoushi, Amin
Timchenko, Victoria
Menictas, Chris
description •New topology optimised manifold configurations for uniform cooling with a low-pressure drop.•Performance of compact and adaptable manifold configuration demonstrated experimentally.•Flow visualisation shows the influence of inlet vortices on flow distribution.•Printed test section provides a convenient milli-fluidic manufacturing method.•Parameter optimisation improves the extraction of geometries from optimised topologies. The current study proposes compact and adaptable manifold configurations for achieving uniform flow distribution with minimal pressure drop, for electronics cooling and many other industrial applications. Two-dimensional topology optimisation generates new manifold configurations, referred to as mini-baffle and baffle. Both configurations use proportionately sized obstructions to regulate flow distribution and achieve excellent uniformity. Elliptical pins, with parametrically optimised diameters, are adopted to represent the mini-baffle configuration and tested using a three-dimensional model and flow visualisation experiments. Computational results show that introducing these pins reduces the variation of normalised channel flow rates from 19% to 1% with only an 8% increase in the pressure drop, at a Reynolds number of 200. Experimental results support this, with variation reduced from 20% to 7%, the slight increase due to manufacturing limitations. Results also show the influence of vortices, formed at the inlet, on flow distribution. A test section printed in a single piece demonstrates a streamlined and cost-effective manufacturing method for milli-fluidic devices. Coupling topology with parameter optimisation provides a method for accurately extracting discrete optimised geometries for physical manufacturing.
doi_str_mv 10.1016/j.applthermaleng.2020.116227
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478112282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431120337066</els_id><sourcerecordid>2478112282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-847e7126f32714c12dddfc734ed3025773397b0b5d80278d7e97ba7633158ef43</originalsourceid><addsrcrecordid>eNqNUMlOwzAQtRBIlOUfLME1xWMnsStxQRUFpCIucOBkuV6KozQOdlLUvycl5cCN0yxvGc1D6BrIFAiUN9VUtW3dfdi4UbVt1lNK6ABBSSk_QhMQnGVFScrjoWfFLMsZwCk6S6kiBKjg-QS9P6vGu1AbrEPj_LqPqvOhSdiFiPs9FDfY1eELb73CXWhDHdY7HNrOb3z64WLVmF9K6lV9WF-gE6fqZC8P9Ry9Le5f54_Z8uXhaX63zDQrRJeJnFsOtHSMcsg1UGOM05zl1jBCC84Zm_EVWRVGEMqF4XYYFS8Zg0JYl7NzdDX6tjF89jZ1sgp9bIaTkuZcAFAq6MC6HVk6hpSidbKNfqPiTgKR-zBlJf-GKfdhyjHMQb4Y5Xb4ZOttlEl722hrfLS6kyb4_xl9AzHwh0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478112282</pqid></control><display><type>article</type><title>Manifold configurations for uniform flow via topology optimisation and flow visualisation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Gilmore, Nicholas ; Hassanzadeh-Barforoushi, Amin ; Timchenko, Victoria ; Menictas, Chris</creator><creatorcontrib>Gilmore, Nicholas ; Hassanzadeh-Barforoushi, Amin ; Timchenko, Victoria ; Menictas, Chris</creatorcontrib><description>•New topology optimised manifold configurations for uniform cooling with a low-pressure drop.•Performance of compact and adaptable manifold configuration demonstrated experimentally.•Flow visualisation shows the influence of inlet vortices on flow distribution.•Printed test section provides a convenient milli-fluidic manufacturing method.•Parameter optimisation improves the extraction of geometries from optimised topologies. The current study proposes compact and adaptable manifold configurations for achieving uniform flow distribution with minimal pressure drop, for electronics cooling and many other industrial applications. Two-dimensional topology optimisation generates new manifold configurations, referred to as mini-baffle and baffle. Both configurations use proportionately sized obstructions to regulate flow distribution and achieve excellent uniformity. Elliptical pins, with parametrically optimised diameters, are adopted to represent the mini-baffle configuration and tested using a three-dimensional model and flow visualisation experiments. Computational results show that introducing these pins reduces the variation of normalised channel flow rates from 19% to 1% with only an 8% increase in the pressure drop, at a Reynolds number of 200. Experimental results support this, with variation reduced from 20% to 7%, the slight increase due to manufacturing limitations. Results also show the influence of vortices, formed at the inlet, on flow distribution. A test section printed in a single piece demonstrates a streamlined and cost-effective manufacturing method for milli-fluidic devices. Coupling topology with parameter optimisation provides a method for accurately extracting discrete optimised geometries for physical manufacturing.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2020.116227</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Baffle ; Channel flow ; Computational fluid dynamics ; Configurations ; Cooling ; Diameters ; Flow distribution ; Flow velocity ; Flow visualisation ; Flow visualization ; Fluid dynamics ; Fluid flow ; Heat transfer ; Industrial applications ; Manifolds (mathematics) ; Obstructions ; Optimization ; Pressure drop ; Production methods ; Reynolds number ; Stress concentration ; Three dimensional flow ; Three dimensional models ; Topology ; Topology optimisation ; Topology optimization ; Uniform ; Uniform flow ; Visualization</subject><ispartof>Applied thermal engineering, 2021-01, Vol.183, p.116227, Article 116227</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 25, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-847e7126f32714c12dddfc734ed3025773397b0b5d80278d7e97ba7633158ef43</citedby><cites>FETCH-LOGICAL-c358t-847e7126f32714c12dddfc734ed3025773397b0b5d80278d7e97ba7633158ef43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gilmore, Nicholas</creatorcontrib><creatorcontrib>Hassanzadeh-Barforoushi, Amin</creatorcontrib><creatorcontrib>Timchenko, Victoria</creatorcontrib><creatorcontrib>Menictas, Chris</creatorcontrib><title>Manifold configurations for uniform flow via topology optimisation and flow visualisation</title><title>Applied thermal engineering</title><description>•New topology optimised manifold configurations for uniform cooling with a low-pressure drop.•Performance of compact and adaptable manifold configuration demonstrated experimentally.•Flow visualisation shows the influence of inlet vortices on flow distribution.•Printed test section provides a convenient milli-fluidic manufacturing method.•Parameter optimisation improves the extraction of geometries from optimised topologies. The current study proposes compact and adaptable manifold configurations for achieving uniform flow distribution with minimal pressure drop, for electronics cooling and many other industrial applications. Two-dimensional topology optimisation generates new manifold configurations, referred to as mini-baffle and baffle. Both configurations use proportionately sized obstructions to regulate flow distribution and achieve excellent uniformity. Elliptical pins, with parametrically optimised diameters, are adopted to represent the mini-baffle configuration and tested using a three-dimensional model and flow visualisation experiments. Computational results show that introducing these pins reduces the variation of normalised channel flow rates from 19% to 1% with only an 8% increase in the pressure drop, at a Reynolds number of 200. Experimental results support this, with variation reduced from 20% to 7%, the slight increase due to manufacturing limitations. Results also show the influence of vortices, formed at the inlet, on flow distribution. A test section printed in a single piece demonstrates a streamlined and cost-effective manufacturing method for milli-fluidic devices. Coupling topology with parameter optimisation provides a method for accurately extracting discrete optimised geometries for physical manufacturing.</description><subject>Baffle</subject><subject>Channel flow</subject><subject>Computational fluid dynamics</subject><subject>Configurations</subject><subject>Cooling</subject><subject>Diameters</subject><subject>Flow distribution</subject><subject>Flow velocity</subject><subject>Flow visualisation</subject><subject>Flow visualization</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Industrial applications</subject><subject>Manifolds (mathematics)</subject><subject>Obstructions</subject><subject>Optimization</subject><subject>Pressure drop</subject><subject>Production methods</subject><subject>Reynolds number</subject><subject>Stress concentration</subject><subject>Three dimensional flow</subject><subject>Three dimensional models</subject><subject>Topology</subject><subject>Topology optimisation</subject><subject>Topology optimization</subject><subject>Uniform</subject><subject>Uniform flow</subject><subject>Visualization</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNUMlOwzAQtRBIlOUfLME1xWMnsStxQRUFpCIucOBkuV6KozQOdlLUvycl5cCN0yxvGc1D6BrIFAiUN9VUtW3dfdi4UbVt1lNK6ABBSSk_QhMQnGVFScrjoWfFLMsZwCk6S6kiBKjg-QS9P6vGu1AbrEPj_LqPqvOhSdiFiPs9FDfY1eELb73CXWhDHdY7HNrOb3z64WLVmF9K6lV9WF-gE6fqZC8P9Ry9Le5f54_Z8uXhaX63zDQrRJeJnFsOtHSMcsg1UGOM05zl1jBCC84Zm_EVWRVGEMqF4XYYFS8Zg0JYl7NzdDX6tjF89jZ1sgp9bIaTkuZcAFAq6MC6HVk6hpSidbKNfqPiTgKR-zBlJf-GKfdhyjHMQb4Y5Xb4ZOttlEl722hrfLS6kyb4_xl9AzHwh0M</recordid><startdate>20210125</startdate><enddate>20210125</enddate><creator>Gilmore, Nicholas</creator><creator>Hassanzadeh-Barforoushi, Amin</creator><creator>Timchenko, Victoria</creator><creator>Menictas, Chris</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20210125</creationdate><title>Manifold configurations for uniform flow via topology optimisation and flow visualisation</title><author>Gilmore, Nicholas ; Hassanzadeh-Barforoushi, Amin ; Timchenko, Victoria ; Menictas, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-847e7126f32714c12dddfc734ed3025773397b0b5d80278d7e97ba7633158ef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Baffle</topic><topic>Channel flow</topic><topic>Computational fluid dynamics</topic><topic>Configurations</topic><topic>Cooling</topic><topic>Diameters</topic><topic>Flow distribution</topic><topic>Flow velocity</topic><topic>Flow visualisation</topic><topic>Flow visualization</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Industrial applications</topic><topic>Manifolds (mathematics)</topic><topic>Obstructions</topic><topic>Optimization</topic><topic>Pressure drop</topic><topic>Production methods</topic><topic>Reynolds number</topic><topic>Stress concentration</topic><topic>Three dimensional flow</topic><topic>Three dimensional models</topic><topic>Topology</topic><topic>Topology optimisation</topic><topic>Topology optimization</topic><topic>Uniform</topic><topic>Uniform flow</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilmore, Nicholas</creatorcontrib><creatorcontrib>Hassanzadeh-Barforoushi, Amin</creatorcontrib><creatorcontrib>Timchenko, Victoria</creatorcontrib><creatorcontrib>Menictas, Chris</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilmore, Nicholas</au><au>Hassanzadeh-Barforoushi, Amin</au><au>Timchenko, Victoria</au><au>Menictas, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manifold configurations for uniform flow via topology optimisation and flow visualisation</atitle><jtitle>Applied thermal engineering</jtitle><date>2021-01-25</date><risdate>2021</risdate><volume>183</volume><spage>116227</spage><pages>116227-</pages><artnum>116227</artnum><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•New topology optimised manifold configurations for uniform cooling with a low-pressure drop.•Performance of compact and adaptable manifold configuration demonstrated experimentally.•Flow visualisation shows the influence of inlet vortices on flow distribution.•Printed test section provides a convenient milli-fluidic manufacturing method.•Parameter optimisation improves the extraction of geometries from optimised topologies. The current study proposes compact and adaptable manifold configurations for achieving uniform flow distribution with minimal pressure drop, for electronics cooling and many other industrial applications. Two-dimensional topology optimisation generates new manifold configurations, referred to as mini-baffle and baffle. Both configurations use proportionately sized obstructions to regulate flow distribution and achieve excellent uniformity. Elliptical pins, with parametrically optimised diameters, are adopted to represent the mini-baffle configuration and tested using a three-dimensional model and flow visualisation experiments. Computational results show that introducing these pins reduces the variation of normalised channel flow rates from 19% to 1% with only an 8% increase in the pressure drop, at a Reynolds number of 200. Experimental results support this, with variation reduced from 20% to 7%, the slight increase due to manufacturing limitations. Results also show the influence of vortices, formed at the inlet, on flow distribution. A test section printed in a single piece demonstrates a streamlined and cost-effective manufacturing method for milli-fluidic devices. Coupling topology with parameter optimisation provides a method for accurately extracting discrete optimised geometries for physical manufacturing.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2020.116227</doi></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2021-01, Vol.183, p.116227, Article 116227
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2478112282
source ScienceDirect Freedom Collection 2022-2024
subjects Baffle
Channel flow
Computational fluid dynamics
Configurations
Cooling
Diameters
Flow distribution
Flow velocity
Flow visualisation
Flow visualization
Fluid dynamics
Fluid flow
Heat transfer
Industrial applications
Manifolds (mathematics)
Obstructions
Optimization
Pressure drop
Production methods
Reynolds number
Stress concentration
Three dimensional flow
Three dimensional models
Topology
Topology optimisation
Topology optimization
Uniform
Uniform flow
Visualization
title Manifold configurations for uniform flow via topology optimisation and flow visualisation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manifold%20configurations%20for%20uniform%20flow%20via%20topology%20optimisation%20and%20flow%20visualisation&rft.jtitle=Applied%20thermal%20engineering&rft.au=Gilmore,%20Nicholas&rft.date=2021-01-25&rft.volume=183&rft.spage=116227&rft.pages=116227-&rft.artnum=116227&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2020.116227&rft_dat=%3Cproquest_cross%3E2478112282%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-847e7126f32714c12dddfc734ed3025773397b0b5d80278d7e97ba7633158ef43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478112282&rft_id=info:pmid/&rfr_iscdi=true