Loading…

Optimal Design for the Rear-Glass Joint of an Automobile for Squeak and Rattle Noise Reduction

Ever since vehicle noise, vibration, and harshness (NVH) reduction technology made dramatic improvements, vehicle interior noises represented by Squeak and Rattle (S/R) becomes an ever more important factor to improve the emotional quality of vehicles. Generally, people detect S/R noises on automoti...

Full description

Saved in:
Bibliographic Details
Published in:International journal of automotive technology 2018-10, Vol.19 (5), p.859-868
Main Authors: Baek, Keon Hee, Choi, Su Bin, Hong, Hee Rok, Jeong, Nak Tak, Moon, Hyeong Uk, Lee, Eun Seong, Kim, Hyung Min, Choi, Sung Uk, Suh, Myung Won
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ever since vehicle noise, vibration, and harshness (NVH) reduction technology made dramatic improvements, vehicle interior noises represented by Squeak and Rattle (S/R) becomes an ever more important factor to improve the emotional quality of vehicles. Generally, people detect S/R noises on automotive interior parts, brake system, suspension, Body in White (BIW), etc. Among them, the rear-glass joint is a major source for vehicle interior noise, and can cause S/R noises under a variety of environmental and driving conditions. This study uses, two approaches, experimental and numerical approaches, to define the cause of S/R noise at the rear-glass section. Based on these two approaches, this study confirms that S/R noises generate through the contact between bottom side of molding and BIW. The sealant penetration length, panelmolding distance, and sealant width are the parameters affecting noise generation. In addition, this study created an optimal design with Design of Experiments (DOE) of the rear-glass joint. The design maximized the sealant penetration length, which is a parameter that majorly affects noise. The optimal design comprises of two steps: sealant injections shape optimization and rear-glass joint parameter optimization. Each step is carried out with FEA and validated by sealant penetration experiments. Through these optimizations, this study obtained an optimum combination of design parameters and fignificantly reduced the noise generated by rear-glass section.
ISSN:1229-9138
1976-3832
DOI:10.1007/s12239-018-0083-3