Loading…
Development of a Driving Behavior-Based Collision Warning System Using a Neural Network
An advanced driver assistance system (ADAS) uses radar, visual information, and laser sensors to calculate variables representing driving conditions, such as time-to-collision (TTC) and time headway (THW), and to determine collision risk using empirically set thresholds. However, the empirically set...
Saved in:
Published in: | International journal of automotive technology 2018-10, Vol.19 (5), p.837-844 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An advanced driver assistance system (ADAS) uses radar, visual information, and laser sensors to calculate variables representing driving conditions, such as time-to-collision (TTC) and time headway (THW), and to determine collision risk using empirically set thresholds. However, the empirically set threshold can generate differences in performance that are detected by the driver. It is appropriate to quickly relay collision risk to drivers whose response speed to dangerous situations is relatively slow and who drive defensively. However, for drivers whose response speed is relatively fast and who drive actively, it may be better not to provide a warning if they are aware of the collision risk in advance, because giving collision warnings too frequently can lower the reliability of the warnings and cause dissatisfaction in the driver, or promote disregard. To solve this problem, this study proposes a collision warning system (CWS) based on an individual driver’s driving behavior. In particular, a driver behavior model was created using an artificial neural network learning algorithm so that the collision risk could be determined according to the driving characteristics of the driver. Finally, the driver behavior model was learned using actual vehicle driving data and the applicability of the proposed CWS was verified through simulation. |
---|---|
ISSN: | 1229-9138 1976-3832 |
DOI: | 10.1007/s12239-018-0080-6 |