Loading…
Critical exponents for a percolation model on transient graphs
We consider the bond percolation problem on a transient weighted graph induced by the excursion sets of the Gaussian free field on the corresponding cable system. Owing to the continuity of this setup and the strong Markov property of the field on the one hand, and the links with potential theory fo...
Saved in:
Published in: | arXiv.org 2023-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Drewitz, Alexander Prévost, Alexis Rodriguez, Pierre-François |
description | We consider the bond percolation problem on a transient weighted graph induced by the excursion sets of the Gaussian free field on the corresponding cable system. Owing to the continuity of this setup and the strong Markov property of the field on the one hand, and the links with potential theory for the associated diffusion on the other, we rigorously determine the behavior of various key quantities related to the (near-)critical regime for this model. In particular, our results apply in case the base graph is the three-dimensional cubic lattice. They unveil the values of the associated critical exponents, which are explicit but not mean-field and consistent with predictions from scaling theory below the upper-critical dimension. |
doi_str_mv | 10.48550/arxiv.2101.05801 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2478171742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478171742</sourcerecordid><originalsourceid>FETCH-LOGICAL-a951-944f5ed17fdc4327bc50c82ac85a7c90f3752e0fa4b77959f16cc2b379bb16bb3</originalsourceid><addsrcrecordid>eNotjb1qwzAURkWhkJDmAboJOtuVriRfaSkU059AoEv2IMlS6uBaruSUPH4N7fSd4XA-Qu45q6VWij3afO1_auCM10xpxm_IGoTglZYAK7It5cwYgwZBKbEmT23u597bgYbrlMYwzoXGlKmlU8g-DXbu00i_UhcGusCc7Vj6xaKnbKfPckduox1K2P7vhhxeXw7te7X_eNu1z_vKGsUrI2VUoeMYOy8FoPOKeQ3Wa2XRGxYFKggsWukQjTKRN96DE2ic441zYkMe_rJTTt-XUObjOV3yuDweQaLmyFGC-AX-c0qZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478171742</pqid></control><display><type>article</type><title>Critical exponents for a percolation model on transient graphs</title><source>ProQuest - Publicly Available Content Database</source><creator>Drewitz, Alexander ; Prévost, Alexis ; Rodriguez, Pierre-François</creator><creatorcontrib>Drewitz, Alexander ; Prévost, Alexis ; Rodriguez, Pierre-François</creatorcontrib><description>We consider the bond percolation problem on a transient weighted graph induced by the excursion sets of the Gaussian free field on the corresponding cable system. Owing to the continuity of this setup and the strong Markov property of the field on the one hand, and the links with potential theory for the associated diffusion on the other, we rigorously determine the behavior of various key quantities related to the (near-)critical regime for this model. In particular, our results apply in case the base graph is the three-dimensional cubic lattice. They unveil the values of the associated critical exponents, which are explicit but not mean-field and consistent with predictions from scaling theory below the upper-critical dimension.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2101.05801</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cubic lattice ; Exponents ; Percolation ; Potential theory</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2478171742?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Drewitz, Alexander</creatorcontrib><creatorcontrib>Prévost, Alexis</creatorcontrib><creatorcontrib>Rodriguez, Pierre-François</creatorcontrib><title>Critical exponents for a percolation model on transient graphs</title><title>arXiv.org</title><description>We consider the bond percolation problem on a transient weighted graph induced by the excursion sets of the Gaussian free field on the corresponding cable system. Owing to the continuity of this setup and the strong Markov property of the field on the one hand, and the links with potential theory for the associated diffusion on the other, we rigorously determine the behavior of various key quantities related to the (near-)critical regime for this model. In particular, our results apply in case the base graph is the three-dimensional cubic lattice. They unveil the values of the associated critical exponents, which are explicit but not mean-field and consistent with predictions from scaling theory below the upper-critical dimension.</description><subject>Cubic lattice</subject><subject>Exponents</subject><subject>Percolation</subject><subject>Potential theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjb1qwzAURkWhkJDmAboJOtuVriRfaSkU059AoEv2IMlS6uBaruSUPH4N7fSd4XA-Qu45q6VWij3afO1_auCM10xpxm_IGoTglZYAK7It5cwYgwZBKbEmT23u597bgYbrlMYwzoXGlKmlU8g-DXbu00i_UhcGusCc7Vj6xaKnbKfPckduox1K2P7vhhxeXw7te7X_eNu1z_vKGsUrI2VUoeMYOy8FoPOKeQ3Wa2XRGxYFKggsWukQjTKRN96DE2ic441zYkMe_rJTTt-XUObjOV3yuDweQaLmyFGC-AX-c0qZ</recordid><startdate>20230319</startdate><enddate>20230319</enddate><creator>Drewitz, Alexander</creator><creator>Prévost, Alexis</creator><creator>Rodriguez, Pierre-François</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230319</creationdate><title>Critical exponents for a percolation model on transient graphs</title><author>Drewitz, Alexander ; Prévost, Alexis ; Rodriguez, Pierre-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a951-944f5ed17fdc4327bc50c82ac85a7c90f3752e0fa4b77959f16cc2b379bb16bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cubic lattice</topic><topic>Exponents</topic><topic>Percolation</topic><topic>Potential theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Drewitz, Alexander</creatorcontrib><creatorcontrib>Prévost, Alexis</creatorcontrib><creatorcontrib>Rodriguez, Pierre-François</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drewitz, Alexander</au><au>Prévost, Alexis</au><au>Rodriguez, Pierre-François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical exponents for a percolation model on transient graphs</atitle><jtitle>arXiv.org</jtitle><date>2023-03-19</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider the bond percolation problem on a transient weighted graph induced by the excursion sets of the Gaussian free field on the corresponding cable system. Owing to the continuity of this setup and the strong Markov property of the field on the one hand, and the links with potential theory for the associated diffusion on the other, we rigorously determine the behavior of various key quantities related to the (near-)critical regime for this model. In particular, our results apply in case the base graph is the three-dimensional cubic lattice. They unveil the values of the associated critical exponents, which are explicit but not mean-field and consistent with predictions from scaling theory below the upper-critical dimension.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2101.05801</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2478171742 |
source | ProQuest - Publicly Available Content Database |
subjects | Cubic lattice Exponents Percolation Potential theory |
title | Critical exponents for a percolation model on transient graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20exponents%20for%20a%20percolation%20model%20on%20transient%20graphs&rft.jtitle=arXiv.org&rft.au=Drewitz,%20Alexander&rft.date=2023-03-19&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2101.05801&rft_dat=%3Cproquest%3E2478171742%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a951-944f5ed17fdc4327bc50c82ac85a7c90f3752e0fa4b77959f16cc2b379bb16bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478171742&rft_id=info:pmid/&rfr_iscdi=true |