Loading…

Critical exponents for a percolation model on transient graphs

We consider the bond percolation problem on a transient weighted graph induced by the excursion sets of the Gaussian free field on the corresponding cable system. Owing to the continuity of this setup and the strong Markov property of the field on the one hand, and the links with potential theory fo...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-03
Main Authors: Drewitz, Alexander, Prévost, Alexis, Rodriguez, Pierre-François
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Drewitz, Alexander
Prévost, Alexis
Rodriguez, Pierre-François
description We consider the bond percolation problem on a transient weighted graph induced by the excursion sets of the Gaussian free field on the corresponding cable system. Owing to the continuity of this setup and the strong Markov property of the field on the one hand, and the links with potential theory for the associated diffusion on the other, we rigorously determine the behavior of various key quantities related to the (near-)critical regime for this model. In particular, our results apply in case the base graph is the three-dimensional cubic lattice. They unveil the values of the associated critical exponents, which are explicit but not mean-field and consistent with predictions from scaling theory below the upper-critical dimension.
doi_str_mv 10.48550/arxiv.2101.05801
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2478171742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478171742</sourcerecordid><originalsourceid>FETCH-LOGICAL-a951-944f5ed17fdc4327bc50c82ac85a7c90f3752e0fa4b77959f16cc2b379bb16bb3</originalsourceid><addsrcrecordid>eNotjb1qwzAURkWhkJDmAboJOtuVriRfaSkU059AoEv2IMlS6uBaruSUPH4N7fSd4XA-Qu45q6VWij3afO1_auCM10xpxm_IGoTglZYAK7It5cwYgwZBKbEmT23u597bgYbrlMYwzoXGlKmlU8g-DXbu00i_UhcGusCc7Vj6xaKnbKfPckduox1K2P7vhhxeXw7te7X_eNu1z_vKGsUrI2VUoeMYOy8FoPOKeQ3Wa2XRGxYFKggsWukQjTKRN96DE2ic441zYkMe_rJTTt-XUObjOV3yuDweQaLmyFGC-AX-c0qZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478171742</pqid></control><display><type>article</type><title>Critical exponents for a percolation model on transient graphs</title><source>ProQuest - Publicly Available Content Database</source><creator>Drewitz, Alexander ; Prévost, Alexis ; Rodriguez, Pierre-François</creator><creatorcontrib>Drewitz, Alexander ; Prévost, Alexis ; Rodriguez, Pierre-François</creatorcontrib><description>We consider the bond percolation problem on a transient weighted graph induced by the excursion sets of the Gaussian free field on the corresponding cable system. Owing to the continuity of this setup and the strong Markov property of the field on the one hand, and the links with potential theory for the associated diffusion on the other, we rigorously determine the behavior of various key quantities related to the (near-)critical regime for this model. In particular, our results apply in case the base graph is the three-dimensional cubic lattice. They unveil the values of the associated critical exponents, which are explicit but not mean-field and consistent with predictions from scaling theory below the upper-critical dimension.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2101.05801</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cubic lattice ; Exponents ; Percolation ; Potential theory</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2478171742?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Drewitz, Alexander</creatorcontrib><creatorcontrib>Prévost, Alexis</creatorcontrib><creatorcontrib>Rodriguez, Pierre-François</creatorcontrib><title>Critical exponents for a percolation model on transient graphs</title><title>arXiv.org</title><description>We consider the bond percolation problem on a transient weighted graph induced by the excursion sets of the Gaussian free field on the corresponding cable system. Owing to the continuity of this setup and the strong Markov property of the field on the one hand, and the links with potential theory for the associated diffusion on the other, we rigorously determine the behavior of various key quantities related to the (near-)critical regime for this model. In particular, our results apply in case the base graph is the three-dimensional cubic lattice. They unveil the values of the associated critical exponents, which are explicit but not mean-field and consistent with predictions from scaling theory below the upper-critical dimension.</description><subject>Cubic lattice</subject><subject>Exponents</subject><subject>Percolation</subject><subject>Potential theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjb1qwzAURkWhkJDmAboJOtuVriRfaSkU059AoEv2IMlS6uBaruSUPH4N7fSd4XA-Qu45q6VWij3afO1_auCM10xpxm_IGoTglZYAK7It5cwYgwZBKbEmT23u597bgYbrlMYwzoXGlKmlU8g-DXbu00i_UhcGusCc7Vj6xaKnbKfPckduox1K2P7vhhxeXw7te7X_eNu1z_vKGsUrI2VUoeMYOy8FoPOKeQ3Wa2XRGxYFKggsWukQjTKRN96DE2ic441zYkMe_rJTTt-XUObjOV3yuDweQaLmyFGC-AX-c0qZ</recordid><startdate>20230319</startdate><enddate>20230319</enddate><creator>Drewitz, Alexander</creator><creator>Prévost, Alexis</creator><creator>Rodriguez, Pierre-François</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230319</creationdate><title>Critical exponents for a percolation model on transient graphs</title><author>Drewitz, Alexander ; Prévost, Alexis ; Rodriguez, Pierre-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a951-944f5ed17fdc4327bc50c82ac85a7c90f3752e0fa4b77959f16cc2b379bb16bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cubic lattice</topic><topic>Exponents</topic><topic>Percolation</topic><topic>Potential theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Drewitz, Alexander</creatorcontrib><creatorcontrib>Prévost, Alexis</creatorcontrib><creatorcontrib>Rodriguez, Pierre-François</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drewitz, Alexander</au><au>Prévost, Alexis</au><au>Rodriguez, Pierre-François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical exponents for a percolation model on transient graphs</atitle><jtitle>arXiv.org</jtitle><date>2023-03-19</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider the bond percolation problem on a transient weighted graph induced by the excursion sets of the Gaussian free field on the corresponding cable system. Owing to the continuity of this setup and the strong Markov property of the field on the one hand, and the links with potential theory for the associated diffusion on the other, we rigorously determine the behavior of various key quantities related to the (near-)critical regime for this model. In particular, our results apply in case the base graph is the three-dimensional cubic lattice. They unveil the values of the associated critical exponents, which are explicit but not mean-field and consistent with predictions from scaling theory below the upper-critical dimension.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2101.05801</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2478171742
source ProQuest - Publicly Available Content Database
subjects Cubic lattice
Exponents
Percolation
Potential theory
title Critical exponents for a percolation model on transient graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20exponents%20for%20a%20percolation%20model%20on%20transient%20graphs&rft.jtitle=arXiv.org&rft.au=Drewitz,%20Alexander&rft.date=2023-03-19&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2101.05801&rft_dat=%3Cproquest%3E2478171742%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a951-944f5ed17fdc4327bc50c82ac85a7c90f3752e0fa4b77959f16cc2b379bb16bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478171742&rft_id=info:pmid/&rfr_iscdi=true