Loading…

Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate anode materials for sodium-ion batteries

•CPVP+C2H2/Bi/rGO is fabricated by a solvothermal and subsequent chemical vapor deposition strategy.•The dual carbon can improve the conductivity and suppress the huge volume changes of Bi.•The CPVP+C2H2/Bi/rGO exhibits excellent cycling performance and rate capability for Na-ion batteries.•The elec...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2021-01, Vol.365, p.137379, Article 137379
Main Authors: Hu, Chenjing, Zhu, Yansong, Ma, Guangyao, Tian, Fang, Zhou, Yanli, Yang, Jian, Qian, Yitai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-39eb27e1a0f390e90d6499bd735381cf21b687a127a42825f0ba80481dec13a63
cites cdi_FETCH-LOGICAL-c343t-39eb27e1a0f390e90d6499bd735381cf21b687a127a42825f0ba80481dec13a63
container_end_page
container_issue
container_start_page 137379
container_title Electrochimica acta
container_volume 365
creator Hu, Chenjing
Zhu, Yansong
Ma, Guangyao
Tian, Fang
Zhou, Yanli
Yang, Jian
Qian, Yitai
description •CPVP+C2H2/Bi/rGO is fabricated by a solvothermal and subsequent chemical vapor deposition strategy.•The dual carbon can improve the conductivity and suppress the huge volume changes of Bi.•The CPVP+C2H2/Bi/rGO exhibits excellent cycling performance and rate capability for Na-ion batteries.•The electrochemical performance of CPVP+C2H2/Bi/rGO is better than CPVP/Bi/rGO.•The assembled full battery with CPVP+C2H2/Bi/rGO as anode presents good electrochemical performance. Bismuth as alloy-based anode material has a high theoretical specific capacity (385 mAh g − 1) and volumetric capacity (3800 mAh cm−3). However, its severe volume expansion during the alloying process will cause structural collapse and capacity degradation. In this work, dual carbon materials containing outmost thin carbon layer and graphene are employed to modify bismuth nanospheres to form a sandwich-like carbon/bismuth/reduced graphene oxide composite (CPVP+C2H2/Bi/rGO), which is fabricated via a facile solvothermal method and subsequent chemical vapor deposition (CVD) strategy. The thin carbon layer coated on the surface of Bi nanoparticles can effectively suppress the huge volume changes of Bi. The graphene oxide as a conductive matrix favors the successful loading of Bi nanospheres, which limits the particle aggregation of Bi upon cycling. The dual carbon also can improve the conductivity of the overall electrode. As anode materials for sodium-ion batteries, the CPVP+C2H2/Bi/rGO shows excellent sodium storage performance, better than CPVP/Bi/rGO. At a high current density of 5 A g − 1, this electrode can retain a capacity of up to 327.6 mAh g − 1 after 1200 cycles. The assembled full battery with CPVP+C2H2/Bi/rGO as anode and Na3V2(PO4)3/rGO as cathode also presents good electrochemical performance. The outstanding electrochemical performance of CPVP+C2H2/Bi/rGO is attributed to the well-designed sandwich-like composite structure and synergistic effect of dual carbon and Bi nanospheres. [Display omitted]
doi_str_mv 10.1016/j.electacta.2020.137379
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478257247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620317722</els_id><sourcerecordid>2478257247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-39eb27e1a0f390e90d6499bd735381cf21b687a127a42825f0ba80481dec13a63</originalsourceid><addsrcrecordid>eNqFUMtKxDAUDaLgOPoNBlxnTJpO0y6HwRcMuFDXIU1upyltMyap4jf402aouBUu3Nc553IPQteMrhhlxW23gh50VClWGc3SlAsuqhO0YKXghJfr6hQtKGWc5EVZnKOLEDpKqSgEXaDvFzWaT6tbEqKfdJw8GGwm1WOtfO1GPDhjG5uGtQ3DFFs8qtGFQwsesHbDwQUbIWAVcO_GPdFfugecNHFr9y3xKh47ZwAPqfRW9QE3zuOQZKeB2HShVvG4gXCJzpq0h6vfvERv93ev20eye3542m52RPOcR8IrqDMBTNGGVxQqaoq8qmoj-JqXTDcZq4tSKJYJlWdltm5orUqal8yAZlwVfIluZt2Dd-8ThCg7N_kxnZRZLhJDpJRQYkZp70Lw0MiDt4PyX5JReXRedvLPeXl0Xs7OJ-ZmZkJ64sOCl0FbGDUY6xNeGmf_1fgB8SuTTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478257247</pqid></control><display><type>article</type><title>Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate anode materials for sodium-ion batteries</title><source>ScienceDirect Freedom Collection</source><creator>Hu, Chenjing ; Zhu, Yansong ; Ma, Guangyao ; Tian, Fang ; Zhou, Yanli ; Yang, Jian ; Qian, Yitai</creator><creatorcontrib>Hu, Chenjing ; Zhu, Yansong ; Ma, Guangyao ; Tian, Fang ; Zhou, Yanli ; Yang, Jian ; Qian, Yitai</creatorcontrib><description>•CPVP+C2H2/Bi/rGO is fabricated by a solvothermal and subsequent chemical vapor deposition strategy.•The dual carbon can improve the conductivity and suppress the huge volume changes of Bi.•The CPVP+C2H2/Bi/rGO exhibits excellent cycling performance and rate capability for Na-ion batteries.•The electrochemical performance of CPVP+C2H2/Bi/rGO is better than CPVP/Bi/rGO.•The assembled full battery with CPVP+C2H2/Bi/rGO as anode presents good electrochemical performance. Bismuth as alloy-based anode material has a high theoretical specific capacity (385 mAh g − 1) and volumetric capacity (3800 mAh cm−3). However, its severe volume expansion during the alloying process will cause structural collapse and capacity degradation. In this work, dual carbon materials containing outmost thin carbon layer and graphene are employed to modify bismuth nanospheres to form a sandwich-like carbon/bismuth/reduced graphene oxide composite (CPVP+C2H2/Bi/rGO), which is fabricated via a facile solvothermal method and subsequent chemical vapor deposition (CVD) strategy. The thin carbon layer coated on the surface of Bi nanoparticles can effectively suppress the huge volume changes of Bi. The graphene oxide as a conductive matrix favors the successful loading of Bi nanospheres, which limits the particle aggregation of Bi upon cycling. The dual carbon also can improve the conductivity of the overall electrode. As anode materials for sodium-ion batteries, the CPVP+C2H2/Bi/rGO shows excellent sodium storage performance, better than CPVP/Bi/rGO. At a high current density of 5 A g − 1, this electrode can retain a capacity of up to 327.6 mAh g − 1 after 1200 cycles. The assembled full battery with CPVP+C2H2/Bi/rGO as anode and Na3V2(PO4)3/rGO as cathode also presents good electrochemical performance. The outstanding electrochemical performance of CPVP+C2H2/Bi/rGO is attributed to the well-designed sandwich-like composite structure and synergistic effect of dual carbon and Bi nanospheres. [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.137379</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Anodes ; Battery cycles ; Bismuth ; Bismuth anode ; Carbon ; Chemical vapor deposition ; Composite structures ; Composites ; Dual carbon ; Electrochemical analysis ; Electrode materials ; Electrodes ; Graphene ; Nanoparticles ; Nanospheres ; Rechargeable batteries ; Sodium-ion batteries ; Storage batteries ; Synergistic effect</subject><ispartof>Electrochimica acta, 2021-01, Vol.365, p.137379, Article 137379</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jan 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-39eb27e1a0f390e90d6499bd735381cf21b687a127a42825f0ba80481dec13a63</citedby><cites>FETCH-LOGICAL-c343t-39eb27e1a0f390e90d6499bd735381cf21b687a127a42825f0ba80481dec13a63</cites><orcidid>0000-0001-9832-641X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hu, Chenjing</creatorcontrib><creatorcontrib>Zhu, Yansong</creatorcontrib><creatorcontrib>Ma, Guangyao</creatorcontrib><creatorcontrib>Tian, Fang</creatorcontrib><creatorcontrib>Zhou, Yanli</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Qian, Yitai</creatorcontrib><title>Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate anode materials for sodium-ion batteries</title><title>Electrochimica acta</title><description>•CPVP+C2H2/Bi/rGO is fabricated by a solvothermal and subsequent chemical vapor deposition strategy.•The dual carbon can improve the conductivity and suppress the huge volume changes of Bi.•The CPVP+C2H2/Bi/rGO exhibits excellent cycling performance and rate capability for Na-ion batteries.•The electrochemical performance of CPVP+C2H2/Bi/rGO is better than CPVP/Bi/rGO.•The assembled full battery with CPVP+C2H2/Bi/rGO as anode presents good electrochemical performance. Bismuth as alloy-based anode material has a high theoretical specific capacity (385 mAh g − 1) and volumetric capacity (3800 mAh cm−3). However, its severe volume expansion during the alloying process will cause structural collapse and capacity degradation. In this work, dual carbon materials containing outmost thin carbon layer and graphene are employed to modify bismuth nanospheres to form a sandwich-like carbon/bismuth/reduced graphene oxide composite (CPVP+C2H2/Bi/rGO), which is fabricated via a facile solvothermal method and subsequent chemical vapor deposition (CVD) strategy. The thin carbon layer coated on the surface of Bi nanoparticles can effectively suppress the huge volume changes of Bi. The graphene oxide as a conductive matrix favors the successful loading of Bi nanospheres, which limits the particle aggregation of Bi upon cycling. The dual carbon also can improve the conductivity of the overall electrode. As anode materials for sodium-ion batteries, the CPVP+C2H2/Bi/rGO shows excellent sodium storage performance, better than CPVP/Bi/rGO. At a high current density of 5 A g − 1, this electrode can retain a capacity of up to 327.6 mAh g − 1 after 1200 cycles. The assembled full battery with CPVP+C2H2/Bi/rGO as anode and Na3V2(PO4)3/rGO as cathode also presents good electrochemical performance. The outstanding electrochemical performance of CPVP+C2H2/Bi/rGO is attributed to the well-designed sandwich-like composite structure and synergistic effect of dual carbon and Bi nanospheres. [Display omitted]</description><subject>Anodes</subject><subject>Battery cycles</subject><subject>Bismuth</subject><subject>Bismuth anode</subject><subject>Carbon</subject><subject>Chemical vapor deposition</subject><subject>Composite structures</subject><subject>Composites</subject><subject>Dual carbon</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Graphene</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Rechargeable batteries</subject><subject>Sodium-ion batteries</subject><subject>Storage batteries</subject><subject>Synergistic effect</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKxDAUDaLgOPoNBlxnTJpO0y6HwRcMuFDXIU1upyltMyap4jf402aouBUu3Nc553IPQteMrhhlxW23gh50VClWGc3SlAsuqhO0YKXghJfr6hQtKGWc5EVZnKOLEDpKqSgEXaDvFzWaT6tbEqKfdJw8GGwm1WOtfO1GPDhjG5uGtQ3DFFs8qtGFQwsesHbDwQUbIWAVcO_GPdFfugecNHFr9y3xKh47ZwAPqfRW9QE3zuOQZKeB2HShVvG4gXCJzpq0h6vfvERv93ev20eye3542m52RPOcR8IrqDMBTNGGVxQqaoq8qmoj-JqXTDcZq4tSKJYJlWdltm5orUqal8yAZlwVfIluZt2Dd-8ThCg7N_kxnZRZLhJDpJRQYkZp70Lw0MiDt4PyX5JReXRedvLPeXl0Xs7OJ-ZmZkJ64sOCl0FbGDUY6xNeGmf_1fgB8SuTTw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Hu, Chenjing</creator><creator>Zhu, Yansong</creator><creator>Ma, Guangyao</creator><creator>Tian, Fang</creator><creator>Zhou, Yanli</creator><creator>Yang, Jian</creator><creator>Qian, Yitai</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9832-641X</orcidid></search><sort><creationdate>20210101</creationdate><title>Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate anode materials for sodium-ion batteries</title><author>Hu, Chenjing ; Zhu, Yansong ; Ma, Guangyao ; Tian, Fang ; Zhou, Yanli ; Yang, Jian ; Qian, Yitai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-39eb27e1a0f390e90d6499bd735381cf21b687a127a42825f0ba80481dec13a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Battery cycles</topic><topic>Bismuth</topic><topic>Bismuth anode</topic><topic>Carbon</topic><topic>Chemical vapor deposition</topic><topic>Composite structures</topic><topic>Composites</topic><topic>Dual carbon</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Graphene</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Rechargeable batteries</topic><topic>Sodium-ion batteries</topic><topic>Storage batteries</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Chenjing</creatorcontrib><creatorcontrib>Zhu, Yansong</creatorcontrib><creatorcontrib>Ma, Guangyao</creatorcontrib><creatorcontrib>Tian, Fang</creatorcontrib><creatorcontrib>Zhou, Yanli</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Qian, Yitai</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Chenjing</au><au>Zhu, Yansong</au><au>Ma, Guangyao</au><au>Tian, Fang</au><au>Zhou, Yanli</au><au>Yang, Jian</au><au>Qian, Yitai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate anode materials for sodium-ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>365</volume><spage>137379</spage><pages>137379-</pages><artnum>137379</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•CPVP+C2H2/Bi/rGO is fabricated by a solvothermal and subsequent chemical vapor deposition strategy.•The dual carbon can improve the conductivity and suppress the huge volume changes of Bi.•The CPVP+C2H2/Bi/rGO exhibits excellent cycling performance and rate capability for Na-ion batteries.•The electrochemical performance of CPVP+C2H2/Bi/rGO is better than CPVP/Bi/rGO.•The assembled full battery with CPVP+C2H2/Bi/rGO as anode presents good electrochemical performance. Bismuth as alloy-based anode material has a high theoretical specific capacity (385 mAh g − 1) and volumetric capacity (3800 mAh cm−3). However, its severe volume expansion during the alloying process will cause structural collapse and capacity degradation. In this work, dual carbon materials containing outmost thin carbon layer and graphene are employed to modify bismuth nanospheres to form a sandwich-like carbon/bismuth/reduced graphene oxide composite (CPVP+C2H2/Bi/rGO), which is fabricated via a facile solvothermal method and subsequent chemical vapor deposition (CVD) strategy. The thin carbon layer coated on the surface of Bi nanoparticles can effectively suppress the huge volume changes of Bi. The graphene oxide as a conductive matrix favors the successful loading of Bi nanospheres, which limits the particle aggregation of Bi upon cycling. The dual carbon also can improve the conductivity of the overall electrode. As anode materials for sodium-ion batteries, the CPVP+C2H2/Bi/rGO shows excellent sodium storage performance, better than CPVP/Bi/rGO. At a high current density of 5 A g − 1, this electrode can retain a capacity of up to 327.6 mAh g − 1 after 1200 cycles. The assembled full battery with CPVP+C2H2/Bi/rGO as anode and Na3V2(PO4)3/rGO as cathode also presents good electrochemical performance. The outstanding electrochemical performance of CPVP+C2H2/Bi/rGO is attributed to the well-designed sandwich-like composite structure and synergistic effect of dual carbon and Bi nanospheres. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.137379</doi><orcidid>https://orcid.org/0000-0001-9832-641X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2021-01, Vol.365, p.137379, Article 137379
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2478257247
source ScienceDirect Freedom Collection
subjects Anodes
Battery cycles
Bismuth
Bismuth anode
Carbon
Chemical vapor deposition
Composite structures
Composites
Dual carbon
Electrochemical analysis
Electrode materials
Electrodes
Graphene
Nanoparticles
Nanospheres
Rechargeable batteries
Sodium-ion batteries
Storage batteries
Synergistic effect
title Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate anode materials for sodium-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A26%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sandwich-structured%20dual%20carbon%20modified%20bismuth%20nanosphere%20composites%20as%20long-cycle%20and%20high-rate%20anode%20materials%20for%20sodium-ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Hu,%20Chenjing&rft.date=2021-01-01&rft.volume=365&rft.spage=137379&rft.pages=137379-&rft.artnum=137379&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.137379&rft_dat=%3Cproquest_cross%3E2478257247%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-39eb27e1a0f390e90d6499bd735381cf21b687a127a42825f0ba80481dec13a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478257247&rft_id=info:pmid/&rfr_iscdi=true