Loading…
A 2D logistic map and Lorenz-Rossler chaotic system based RGB image encryption approach
This paper presents a novel color image encryption approach. The proposed approach utilizes the basic concepts of DNA cryptography along with Lorenz and Rossler chaotic system and 2D logistic map. The proposed approach encrypts RGB images using DNA cryptography techniques. In diffusion phase, at pix...
Saved in:
Published in: | Multimedia tools and applications 2021, Vol.80 (3), p.3749-3773 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a novel color image encryption approach. The proposed approach utilizes the basic concepts of DNA cryptography along with Lorenz and Rossler chaotic system and 2D logistic map. The proposed approach encrypts RGB images using DNA cryptography techniques. In diffusion phase, at pixel level Lorenz and Rossler chaotic system is used to encrypt the three channels of test images. Afterwards, at bit level 2D logistic map is used for performing bitwise chaotic ponytail process on these diffused Red, Green, and Blue channels in confusion phase. Simulation of the proposed approach on test images reveals that the color images have been encrypted very efficiently. |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-020-09854-x |