Loading…

Symmetry Breaking in Monometallic Nanocrystals toward Broadband and Direct Electron Transfer Enhanced Plasmonic Photocatalysis

Metallic nanocrystals manifest themselves as fascinating light absorbers for applications in plasmon‐enhanced photocatalysis and solar energy harvesting. The essential challenges lie in harvesting the full‐spectrum solar light and harnessing the plasmon‐induced hot carriers at the metal–acceptor int...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2021-01, Vol.31 (3), p.n/a
Main Authors: Shao, Wei, Pan, Qianqian, Chen, Qiaoli, Zhu, Chongzhi, Tao, Weijian, Zhu, Haiming, Song, Huijun, Liu, Xuelu, Tan, Ping‐Heng, Sheng, Guan, Sun, Tulai, Li, Xiaonian, Zhu, Yihan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3568-13c1f1419fe768a9ba85fb163963a89bc112aef41426d5ba5d07622fcbec8cb83
cites cdi_FETCH-LOGICAL-c3568-13c1f1419fe768a9ba85fb163963a89bc112aef41426d5ba5d07622fcbec8cb83
container_end_page n/a
container_issue 3
container_start_page
container_title Advanced functional materials
container_volume 31
creator Shao, Wei
Pan, Qianqian
Chen, Qiaoli
Zhu, Chongzhi
Tao, Weijian
Zhu, Haiming
Song, Huijun
Liu, Xuelu
Tan, Ping‐Heng
Sheng, Guan
Sun, Tulai
Li, Xiaonian
Zhu, Yihan
description Metallic nanocrystals manifest themselves as fascinating light absorbers for applications in plasmon‐enhanced photocatalysis and solar energy harvesting. The essential challenges lie in harvesting the full‐spectrum solar light and harnessing the plasmon‐induced hot carriers at the metal–acceptor interface. To this end, a cooperative overpotential and underpotential deposition strategy is proposed to mitigate both the challenges. Specifically, by utilizing both ionic additive and thiol passivator to introduce symmetry‐breaking growth over gold icosahedral nanocrystals, the microscopic origin can be attributed to the site‐specific nucleation of stacking faults and dislocations. By adopting asymmetric crystal shape and unique surface facets, such nanocrystals attain high activity toward photocatalytic ammonia borane hydrolysis, arising from combined broadband plasmonic properties and enhanced direct transfer of hot electrons across the metal–adsorbate interface. Chemical synthesis creates monometallic Au nanocrystals with reduced symmetry and unique microfaceting, which adopt broadband optical properties and promote photochemical activity stemming from enhanced direct electron transfer across the metal–adsorbate interface.
doi_str_mv 10.1002/adfm.202006738
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478459935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478459935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3568-13c1f1419fe768a9ba85fb163963a89bc112aef41426d5ba5d07622fcbec8cb83</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxSMEEqWwMltibvFH4jhjKS0gtVCJIrFFF8emKYld7FRVFv52XBWVkcHnu9PvvZNeFF0TPCQY01sodTOkmGLMUyZOoh7hhA8YpuL02JP38-jC-zXGJE1Z3Iu-X7umUa3r0J1T8FmZD1QZNLfGhi3UdSXRMxgrXefD6FFrd-DKAFsoCzAl2r_7yinZokkdqrMGLR0Yr5VDE7MCI1WJFjX4xprgtljZ1koIZp2v_GV0poOtuvr9-9HbdLIcPw5mLw9P49FsIFnCxYAwSTSJSaZVygVkBYhEF4SzjDMQWSEJoaB0TGLKy6SApMQpp1TLQkkhC8H60c3Bd-Ps11b5Nl_brTPhZE7jVMRJlrEkUMMDJZ313imdb1zVgOtygvN9xvk-4_yYcRBkB8GuqlX3D52P7qfzP-0PhaODHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478459935</pqid></control><display><type>article</type><title>Symmetry Breaking in Monometallic Nanocrystals toward Broadband and Direct Electron Transfer Enhanced Plasmonic Photocatalysis</title><source>Wiley</source><creator>Shao, Wei ; Pan, Qianqian ; Chen, Qiaoli ; Zhu, Chongzhi ; Tao, Weijian ; Zhu, Haiming ; Song, Huijun ; Liu, Xuelu ; Tan, Ping‐Heng ; Sheng, Guan ; Sun, Tulai ; Li, Xiaonian ; Zhu, Yihan</creator><creatorcontrib>Shao, Wei ; Pan, Qianqian ; Chen, Qiaoli ; Zhu, Chongzhi ; Tao, Weijian ; Zhu, Haiming ; Song, Huijun ; Liu, Xuelu ; Tan, Ping‐Heng ; Sheng, Guan ; Sun, Tulai ; Li, Xiaonian ; Zhu, Yihan</creatorcontrib><description>Metallic nanocrystals manifest themselves as fascinating light absorbers for applications in plasmon‐enhanced photocatalysis and solar energy harvesting. The essential challenges lie in harvesting the full‐spectrum solar light and harnessing the plasmon‐induced hot carriers at the metal–acceptor interface. To this end, a cooperative overpotential and underpotential deposition strategy is proposed to mitigate both the challenges. Specifically, by utilizing both ionic additive and thiol passivator to introduce symmetry‐breaking growth over gold icosahedral nanocrystals, the microscopic origin can be attributed to the site‐specific nucleation of stacking faults and dislocations. By adopting asymmetric crystal shape and unique surface facets, such nanocrystals attain high activity toward photocatalytic ammonia borane hydrolysis, arising from combined broadband plasmonic properties and enhanced direct transfer of hot electrons across the metal–adsorbate interface. Chemical synthesis creates monometallic Au nanocrystals with reduced symmetry and unique microfaceting, which adopt broadband optical properties and promote photochemical activity stemming from enhanced direct electron transfer across the metal–adsorbate interface.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202006738</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adsorbates ; Ammonia ; Broadband ; Broken symmetry ; Crystal dislocations ; Electron transfer ; Energy harvesting ; gold ; Hot electrons ; Icosahedral phase ; Materials science ; Nanocrystals ; Nucleation ; Photocatalysis ; plasmonic ; Plasmonics ; Solar energy ; Stacking faults ; symmetry breaking ; Underpotential deposition</subject><ispartof>Advanced functional materials, 2021-01, Vol.31 (3), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3568-13c1f1419fe768a9ba85fb163963a89bc112aef41426d5ba5d07622fcbec8cb83</citedby><cites>FETCH-LOGICAL-c3568-13c1f1419fe768a9ba85fb163963a89bc112aef41426d5ba5d07622fcbec8cb83</cites><orcidid>0000-0002-8150-7350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shao, Wei</creatorcontrib><creatorcontrib>Pan, Qianqian</creatorcontrib><creatorcontrib>Chen, Qiaoli</creatorcontrib><creatorcontrib>Zhu, Chongzhi</creatorcontrib><creatorcontrib>Tao, Weijian</creatorcontrib><creatorcontrib>Zhu, Haiming</creatorcontrib><creatorcontrib>Song, Huijun</creatorcontrib><creatorcontrib>Liu, Xuelu</creatorcontrib><creatorcontrib>Tan, Ping‐Heng</creatorcontrib><creatorcontrib>Sheng, Guan</creatorcontrib><creatorcontrib>Sun, Tulai</creatorcontrib><creatorcontrib>Li, Xiaonian</creatorcontrib><creatorcontrib>Zhu, Yihan</creatorcontrib><title>Symmetry Breaking in Monometallic Nanocrystals toward Broadband and Direct Electron Transfer Enhanced Plasmonic Photocatalysis</title><title>Advanced functional materials</title><description>Metallic nanocrystals manifest themselves as fascinating light absorbers for applications in plasmon‐enhanced photocatalysis and solar energy harvesting. The essential challenges lie in harvesting the full‐spectrum solar light and harnessing the plasmon‐induced hot carriers at the metal–acceptor interface. To this end, a cooperative overpotential and underpotential deposition strategy is proposed to mitigate both the challenges. Specifically, by utilizing both ionic additive and thiol passivator to introduce symmetry‐breaking growth over gold icosahedral nanocrystals, the microscopic origin can be attributed to the site‐specific nucleation of stacking faults and dislocations. By adopting asymmetric crystal shape and unique surface facets, such nanocrystals attain high activity toward photocatalytic ammonia borane hydrolysis, arising from combined broadband plasmonic properties and enhanced direct transfer of hot electrons across the metal–adsorbate interface. Chemical synthesis creates monometallic Au nanocrystals with reduced symmetry and unique microfaceting, which adopt broadband optical properties and promote photochemical activity stemming from enhanced direct electron transfer across the metal–adsorbate interface.</description><subject>Adsorbates</subject><subject>Ammonia</subject><subject>Broadband</subject><subject>Broken symmetry</subject><subject>Crystal dislocations</subject><subject>Electron transfer</subject><subject>Energy harvesting</subject><subject>gold</subject><subject>Hot electrons</subject><subject>Icosahedral phase</subject><subject>Materials science</subject><subject>Nanocrystals</subject><subject>Nucleation</subject><subject>Photocatalysis</subject><subject>plasmonic</subject><subject>Plasmonics</subject><subject>Solar energy</subject><subject>Stacking faults</subject><subject>symmetry breaking</subject><subject>Underpotential deposition</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxSMEEqWwMltibvFH4jhjKS0gtVCJIrFFF8emKYld7FRVFv52XBWVkcHnu9PvvZNeFF0TPCQY01sodTOkmGLMUyZOoh7hhA8YpuL02JP38-jC-zXGJE1Z3Iu-X7umUa3r0J1T8FmZD1QZNLfGhi3UdSXRMxgrXefD6FFrd-DKAFsoCzAl2r_7yinZokkdqrMGLR0Yr5VDE7MCI1WJFjX4xprgtljZ1koIZp2v_GV0poOtuvr9-9HbdLIcPw5mLw9P49FsIFnCxYAwSTSJSaZVygVkBYhEF4SzjDMQWSEJoaB0TGLKy6SApMQpp1TLQkkhC8H60c3Bd-Ps11b5Nl_brTPhZE7jVMRJlrEkUMMDJZ313imdb1zVgOtygvN9xvk-4_yYcRBkB8GuqlX3D52P7qfzP-0PhaODHQ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Shao, Wei</creator><creator>Pan, Qianqian</creator><creator>Chen, Qiaoli</creator><creator>Zhu, Chongzhi</creator><creator>Tao, Weijian</creator><creator>Zhu, Haiming</creator><creator>Song, Huijun</creator><creator>Liu, Xuelu</creator><creator>Tan, Ping‐Heng</creator><creator>Sheng, Guan</creator><creator>Sun, Tulai</creator><creator>Li, Xiaonian</creator><creator>Zhu, Yihan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8150-7350</orcidid></search><sort><creationdate>20210101</creationdate><title>Symmetry Breaking in Monometallic Nanocrystals toward Broadband and Direct Electron Transfer Enhanced Plasmonic Photocatalysis</title><author>Shao, Wei ; Pan, Qianqian ; Chen, Qiaoli ; Zhu, Chongzhi ; Tao, Weijian ; Zhu, Haiming ; Song, Huijun ; Liu, Xuelu ; Tan, Ping‐Heng ; Sheng, Guan ; Sun, Tulai ; Li, Xiaonian ; Zhu, Yihan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3568-13c1f1419fe768a9ba85fb163963a89bc112aef41426d5ba5d07622fcbec8cb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorbates</topic><topic>Ammonia</topic><topic>Broadband</topic><topic>Broken symmetry</topic><topic>Crystal dislocations</topic><topic>Electron transfer</topic><topic>Energy harvesting</topic><topic>gold</topic><topic>Hot electrons</topic><topic>Icosahedral phase</topic><topic>Materials science</topic><topic>Nanocrystals</topic><topic>Nucleation</topic><topic>Photocatalysis</topic><topic>plasmonic</topic><topic>Plasmonics</topic><topic>Solar energy</topic><topic>Stacking faults</topic><topic>symmetry breaking</topic><topic>Underpotential deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Wei</creatorcontrib><creatorcontrib>Pan, Qianqian</creatorcontrib><creatorcontrib>Chen, Qiaoli</creatorcontrib><creatorcontrib>Zhu, Chongzhi</creatorcontrib><creatorcontrib>Tao, Weijian</creatorcontrib><creatorcontrib>Zhu, Haiming</creatorcontrib><creatorcontrib>Song, Huijun</creatorcontrib><creatorcontrib>Liu, Xuelu</creatorcontrib><creatorcontrib>Tan, Ping‐Heng</creatorcontrib><creatorcontrib>Sheng, Guan</creatorcontrib><creatorcontrib>Sun, Tulai</creatorcontrib><creatorcontrib>Li, Xiaonian</creatorcontrib><creatorcontrib>Zhu, Yihan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Wei</au><au>Pan, Qianqian</au><au>Chen, Qiaoli</au><au>Zhu, Chongzhi</au><au>Tao, Weijian</au><au>Zhu, Haiming</au><au>Song, Huijun</au><au>Liu, Xuelu</au><au>Tan, Ping‐Heng</au><au>Sheng, Guan</au><au>Sun, Tulai</au><au>Li, Xiaonian</au><au>Zhu, Yihan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry Breaking in Monometallic Nanocrystals toward Broadband and Direct Electron Transfer Enhanced Plasmonic Photocatalysis</atitle><jtitle>Advanced functional materials</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>31</volume><issue>3</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Metallic nanocrystals manifest themselves as fascinating light absorbers for applications in plasmon‐enhanced photocatalysis and solar energy harvesting. The essential challenges lie in harvesting the full‐spectrum solar light and harnessing the plasmon‐induced hot carriers at the metal–acceptor interface. To this end, a cooperative overpotential and underpotential deposition strategy is proposed to mitigate both the challenges. Specifically, by utilizing both ionic additive and thiol passivator to introduce symmetry‐breaking growth over gold icosahedral nanocrystals, the microscopic origin can be attributed to the site‐specific nucleation of stacking faults and dislocations. By adopting asymmetric crystal shape and unique surface facets, such nanocrystals attain high activity toward photocatalytic ammonia borane hydrolysis, arising from combined broadband plasmonic properties and enhanced direct transfer of hot electrons across the metal–adsorbate interface. Chemical synthesis creates monometallic Au nanocrystals with reduced symmetry and unique microfaceting, which adopt broadband optical properties and promote photochemical activity stemming from enhanced direct electron transfer across the metal–adsorbate interface.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202006738</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8150-7350</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-01, Vol.31 (3), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2478459935
source Wiley
subjects Adsorbates
Ammonia
Broadband
Broken symmetry
Crystal dislocations
Electron transfer
Energy harvesting
gold
Hot electrons
Icosahedral phase
Materials science
Nanocrystals
Nucleation
Photocatalysis
plasmonic
Plasmonics
Solar energy
Stacking faults
symmetry breaking
Underpotential deposition
title Symmetry Breaking in Monometallic Nanocrystals toward Broadband and Direct Electron Transfer Enhanced Plasmonic Photocatalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20Breaking%20in%20Monometallic%20Nanocrystals%20toward%20Broadband%20and%20Direct%20Electron%20Transfer%20Enhanced%20Plasmonic%20Photocatalysis&rft.jtitle=Advanced%20functional%20materials&rft.au=Shao,%20Wei&rft.date=2021-01-01&rft.volume=31&rft.issue=3&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202006738&rft_dat=%3Cproquest_cross%3E2478459935%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3568-13c1f1419fe768a9ba85fb163963a89bc112aef41426d5ba5d07622fcbec8cb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478459935&rft_id=info:pmid/&rfr_iscdi=true