Loading…
FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles
Biocompatible and luminescent nanostructures synthesized by capping gold-carbon nanoparticles (HOOC-4-C 6 H 4 -AuNPs) with amino acids tyrosine, tryptophan, and cysteine were used for the quantitative estimation of ranitidine (RNH), a peptic ulcer and gastroesophageal reflux drug. We applied a fluor...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2021-02, Vol.413 (4), p.1117-1125 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biocompatible and luminescent nanostructures synthesized by capping gold-carbon nanoparticles (HOOC-4-C
6
H
4
-AuNPs) with amino acids tyrosine, tryptophan, and cysteine were used for the quantitative estimation of ranitidine (RNH), a peptic ulcer and gastroesophageal reflux drug. We applied a fluorescence quenching mechanism to investigate the viability of the energy transfer based on gold-carbon nanosensors. Förster resonance energy transfer (FRET) calculations showed a donor–acceptor distance of 1.69 nm (Tyr@AuNPs), 2.27 nm (Trp@AuNPs), and 2.32 nm (Cys@AuNPs). The constant time-resolved fluorescence lifetime measurements supported the static quenching nature. This method was successfully utilized in the detection and quantification of RNH, with a limit of detection (LOD) of 0.174, 0.56, and 0.332 μM for Tyr@AuNP, Trp@AuNP, and Cys@AuNP bioconjugates, respectively. This approach was also successful in the quantification of RNH in spiked serum samples. |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-020-03075-9 |