Loading…
FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles
Biocompatible and luminescent nanostructures synthesized by capping gold-carbon nanoparticles (HOOC-4-C 6 H 4 -AuNPs) with amino acids tyrosine, tryptophan, and cysteine were used for the quantitative estimation of ranitidine (RNH), a peptic ulcer and gastroesophageal reflux drug. We applied a fluor...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2021-02, Vol.413 (4), p.1117-1125 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c545t-6bdd02edd797fba65f51165650e403e935b74d637c90b8c511a77ba08e28b6c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c545t-6bdd02edd797fba65f51165650e403e935b74d637c90b8c511a77ba08e28b6c73 |
container_end_page | 1125 |
container_issue | 4 |
container_start_page | 1117 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 413 |
creator | Hameed, Mehavesh K. Parambath, Javad B. M. Kanan, Sofian M. Mohamed, Ahmed A. |
description | Biocompatible and luminescent nanostructures synthesized by capping gold-carbon nanoparticles (HOOC-4-C
6
H
4
-AuNPs) with amino acids tyrosine, tryptophan, and cysteine were used for the quantitative estimation of ranitidine (RNH), a peptic ulcer and gastroesophageal reflux drug. We applied a fluorescence quenching mechanism to investigate the viability of the energy transfer based on gold-carbon nanosensors. Förster resonance energy transfer (FRET) calculations showed a donor–acceptor distance of 1.69 nm (Tyr@AuNPs), 2.27 nm (Trp@AuNPs), and 2.32 nm (Cys@AuNPs). The constant time-resolved fluorescence lifetime measurements supported the static quenching nature. This method was successfully utilized in the detection and quantification of RNH, with a limit of detection (LOD) of 0.174, 0.56, and 0.332 μM for Tyr@AuNP, Trp@AuNP, and Cys@AuNP bioconjugates, respectively. This approach was also successful in the quantification of RNH in spiked serum samples. |
doi_str_mv | 10.1007/s00216-020-03075-9 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2478662503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650954462</galeid><sourcerecordid>A650954462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-6bdd02edd797fba65f51165650e403e935b74d637c90b8c511a77ba08e28b6c73</originalsourceid><addsrcrecordid>eNp9UU1r3TAQNKWlSZP8gR6KoGelK8mS7FtDSD8gEAjpWehj9XCwpVfJPuTfV-lLEwql7EHL7szOiOm69wzOGYD-VAE4UxQ4UBCgJR1fdcdMsYFyJeH1c9_zo-5drfcATA5Mve2OhOhhVJofdz--3F7dUWcrBhLnLResHtNK9iU7JDEXEsq2I7ZW-0BiyQuxy5QysX4Kn3d5DtTb4nIiyaa8t2Wd_Iz1tHsT7Vzx7Ok9aTpXd5ff6PXN1--XF9fUy16uVLkQgGMIetTRWSWjZEzJZh57EDgK6XQflNB-BDf4trRaOwsD8sEpr8VJ9_Fwt9n9uWFdzX3eSmqShvd6UIpLEC-onZ3RTCnmtVi_TNWbi6Y1yr5XvKHO_4FqFXCZfE4Ypzb_i8APBF9yrQWj2ZdpseXBMDCPAZlDQKYFZH4HZMZG-vDkeHMLhmfKn0QaQBwAta3SDsvLl_5z9hcEcpkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478662503</pqid></control><display><type>article</type><title>FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles</title><source>Springer Link</source><creator>Hameed, Mehavesh K. ; Parambath, Javad B. M. ; Kanan, Sofian M. ; Mohamed, Ahmed A.</creator><creatorcontrib>Hameed, Mehavesh K. ; Parambath, Javad B. M. ; Kanan, Sofian M. ; Mohamed, Ahmed A.</creatorcontrib><description>Biocompatible and luminescent nanostructures synthesized by capping gold-carbon nanoparticles (HOOC-4-C
6
H
4
-AuNPs) with amino acids tyrosine, tryptophan, and cysteine were used for the quantitative estimation of ranitidine (RNH), a peptic ulcer and gastroesophageal reflux drug. We applied a fluorescence quenching mechanism to investigate the viability of the energy transfer based on gold-carbon nanosensors. Förster resonance energy transfer (FRET) calculations showed a donor–acceptor distance of 1.69 nm (Tyr@AuNPs), 2.27 nm (Trp@AuNPs), and 2.32 nm (Cys@AuNPs). The constant time-resolved fluorescence lifetime measurements supported the static quenching nature. This method was successfully utilized in the detection and quantification of RNH, with a limit of detection (LOD) of 0.174, 0.56, and 0.332 μM for Tyr@AuNP, Trp@AuNP, and Cys@AuNP bioconjugates, respectively. This approach was also successful in the quantification of RNH in spiked serum samples.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-020-03075-9</identifier><identifier>PMID: 33409672</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amino acids ; Analytical Chemistry ; Biochemistry ; Biocompatibility ; Carbon ; Characterization and Evaluation of Materials ; Chemical properties ; Chemistry ; Chemistry and Materials Science ; Composition ; Energy transfer ; Fluorescence ; Fluorescence resonance energy transfer ; Fluorescent indicators ; Food Science ; Gastroesophageal reflux ; Gold ; Laboratory Medicine ; Monitoring/Environmental Analysis ; Nanoparticles ; Peptic ulcers ; Quenching ; Ranitidine ; Research Paper ; Tryptophan ; Tyrosine</subject><ispartof>Analytical and bioanalytical chemistry, 2021-02, Vol.413 (4), p.1117-1125</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-6bdd02edd797fba65f51165650e403e935b74d637c90b8c511a77ba08e28b6c73</citedby><cites>FETCH-LOGICAL-c545t-6bdd02edd797fba65f51165650e403e935b74d637c90b8c511a77ba08e28b6c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33409672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hameed, Mehavesh K.</creatorcontrib><creatorcontrib>Parambath, Javad B. M.</creatorcontrib><creatorcontrib>Kanan, Sofian M.</creatorcontrib><creatorcontrib>Mohamed, Ahmed A.</creatorcontrib><title>FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Biocompatible and luminescent nanostructures synthesized by capping gold-carbon nanoparticles (HOOC-4-C
6
H
4
-AuNPs) with amino acids tyrosine, tryptophan, and cysteine were used for the quantitative estimation of ranitidine (RNH), a peptic ulcer and gastroesophageal reflux drug. We applied a fluorescence quenching mechanism to investigate the viability of the energy transfer based on gold-carbon nanosensors. Förster resonance energy transfer (FRET) calculations showed a donor–acceptor distance of 1.69 nm (Tyr@AuNPs), 2.27 nm (Trp@AuNPs), and 2.32 nm (Cys@AuNPs). The constant time-resolved fluorescence lifetime measurements supported the static quenching nature. This method was successfully utilized in the detection and quantification of RNH, with a limit of detection (LOD) of 0.174, 0.56, and 0.332 μM for Tyr@AuNP, Trp@AuNP, and Cys@AuNP bioconjugates, respectively. This approach was also successful in the quantification of RNH in spiked serum samples.</description><subject>Amino acids</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Biocompatibility</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical properties</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composition</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescent indicators</subject><subject>Food Science</subject><subject>Gastroesophageal reflux</subject><subject>Gold</subject><subject>Laboratory Medicine</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nanoparticles</subject><subject>Peptic ulcers</subject><subject>Quenching</subject><subject>Ranitidine</subject><subject>Research Paper</subject><subject>Tryptophan</subject><subject>Tyrosine</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3TAQNKWlSZP8gR6KoGelK8mS7FtDSD8gEAjpWehj9XCwpVfJPuTfV-lLEwql7EHL7szOiOm69wzOGYD-VAE4UxQ4UBCgJR1fdcdMsYFyJeH1c9_zo-5drfcATA5Mve2OhOhhVJofdz--3F7dUWcrBhLnLResHtNK9iU7JDEXEsq2I7ZW-0BiyQuxy5QysX4Kn3d5DtTb4nIiyaa8t2Wd_Iz1tHsT7Vzx7Ok9aTpXd5ff6PXN1--XF9fUy16uVLkQgGMIetTRWSWjZEzJZh57EDgK6XQflNB-BDf4trRaOwsD8sEpr8VJ9_Fwt9n9uWFdzX3eSmqShvd6UIpLEC-onZ3RTCnmtVi_TNWbi6Y1yr5XvKHO_4FqFXCZfE4Ypzb_i8APBF9yrQWj2ZdpseXBMDCPAZlDQKYFZH4HZMZG-vDkeHMLhmfKn0QaQBwAta3SDsvLl_5z9hcEcpkc</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Hameed, Mehavesh K.</creator><creator>Parambath, Javad B. M.</creator><creator>Kanan, Sofian M.</creator><creator>Mohamed, Ahmed A.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210201</creationdate><title>FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles</title><author>Hameed, Mehavesh K. ; Parambath, Javad B. M. ; Kanan, Sofian M. ; Mohamed, Ahmed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-6bdd02edd797fba65f51165650e403e935b74d637c90b8c511a77ba08e28b6c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Biocompatibility</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical properties</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composition</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescent indicators</topic><topic>Food Science</topic><topic>Gastroesophageal reflux</topic><topic>Gold</topic><topic>Laboratory Medicine</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nanoparticles</topic><topic>Peptic ulcers</topic><topic>Quenching</topic><topic>Ranitidine</topic><topic>Research Paper</topic><topic>Tryptophan</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hameed, Mehavesh K.</creatorcontrib><creatorcontrib>Parambath, Javad B. M.</creatorcontrib><creatorcontrib>Kanan, Sofian M.</creatorcontrib><creatorcontrib>Mohamed, Ahmed A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hameed, Mehavesh K.</au><au>Parambath, Javad B. M.</au><au>Kanan, Sofian M.</au><au>Mohamed, Ahmed A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>413</volume><issue>4</issue><spage>1117</spage><epage>1125</epage><pages>1117-1125</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Biocompatible and luminescent nanostructures synthesized by capping gold-carbon nanoparticles (HOOC-4-C
6
H
4
-AuNPs) with amino acids tyrosine, tryptophan, and cysteine were used for the quantitative estimation of ranitidine (RNH), a peptic ulcer and gastroesophageal reflux drug. We applied a fluorescence quenching mechanism to investigate the viability of the energy transfer based on gold-carbon nanosensors. Förster resonance energy transfer (FRET) calculations showed a donor–acceptor distance of 1.69 nm (Tyr@AuNPs), 2.27 nm (Trp@AuNPs), and 2.32 nm (Cys@AuNPs). The constant time-resolved fluorescence lifetime measurements supported the static quenching nature. This method was successfully utilized in the detection and quantification of RNH, with a limit of detection (LOD) of 0.174, 0.56, and 0.332 μM for Tyr@AuNP, Trp@AuNP, and Cys@AuNP bioconjugates, respectively. This approach was also successful in the quantification of RNH in spiked serum samples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33409672</pmid><doi>10.1007/s00216-020-03075-9</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2021-02, Vol.413 (4), p.1117-1125 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_journals_2478662503 |
source | Springer Link |
subjects | Amino acids Analytical Chemistry Biochemistry Biocompatibility Carbon Characterization and Evaluation of Materials Chemical properties Chemistry Chemistry and Materials Science Composition Energy transfer Fluorescence Fluorescence resonance energy transfer Fluorescent indicators Food Science Gastroesophageal reflux Gold Laboratory Medicine Monitoring/Environmental Analysis Nanoparticles Peptic ulcers Quenching Ranitidine Research Paper Tryptophan Tyrosine |
title | FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FRET-based%20fluorescent%20probe%20for%20drug%20assay%20from%20amino%20acid@gold-carbon%20nanoparticles&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Hameed,%20Mehavesh%20K.&rft.date=2021-02-01&rft.volume=413&rft.issue=4&rft.spage=1117&rft.epage=1125&rft.pages=1117-1125&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-020-03075-9&rft_dat=%3Cgale_proqu%3EA650954462%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-6bdd02edd797fba65f51165650e403e935b74d637c90b8c511a77ba08e28b6c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478662503&rft_id=info:pmid/33409672&rft_galeid=A650954462&rfr_iscdi=true |