Loading…

FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles

Biocompatible and luminescent nanostructures synthesized by capping gold-carbon nanoparticles (HOOC-4-C 6 H 4 -AuNPs) with amino acids tyrosine, tryptophan, and cysteine were used for the quantitative estimation of ranitidine (RNH), a peptic ulcer and gastroesophageal reflux drug. We applied a fluor...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2021-02, Vol.413 (4), p.1117-1125
Main Authors: Hameed, Mehavesh K., Parambath, Javad B. M., Kanan, Sofian M., Mohamed, Ahmed A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c545t-6bdd02edd797fba65f51165650e403e935b74d637c90b8c511a77ba08e28b6c73
cites cdi_FETCH-LOGICAL-c545t-6bdd02edd797fba65f51165650e403e935b74d637c90b8c511a77ba08e28b6c73
container_end_page 1125
container_issue 4
container_start_page 1117
container_title Analytical and bioanalytical chemistry
container_volume 413
creator Hameed, Mehavesh K.
Parambath, Javad B. M.
Kanan, Sofian M.
Mohamed, Ahmed A.
description Biocompatible and luminescent nanostructures synthesized by capping gold-carbon nanoparticles (HOOC-4-C 6 H 4 -AuNPs) with amino acids tyrosine, tryptophan, and cysteine were used for the quantitative estimation of ranitidine (RNH), a peptic ulcer and gastroesophageal reflux drug. We applied a fluorescence quenching mechanism to investigate the viability of the energy transfer based on gold-carbon nanosensors. Förster resonance energy transfer (FRET) calculations showed a donor–acceptor distance of 1.69 nm (Tyr@AuNPs), 2.27 nm (Trp@AuNPs), and 2.32 nm (Cys@AuNPs). The constant time-resolved fluorescence lifetime measurements supported the static quenching nature. This method was successfully utilized in the detection and quantification of RNH, with a limit of detection (LOD) of 0.174, 0.56, and 0.332 μM for Tyr@AuNP, Trp@AuNP, and Cys@AuNP bioconjugates, respectively. This approach was also successful in the quantification of RNH in spiked serum samples.
doi_str_mv 10.1007/s00216-020-03075-9
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2478662503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650954462</galeid><sourcerecordid>A650954462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-6bdd02edd797fba65f51165650e403e935b74d637c90b8c511a77ba08e28b6c73</originalsourceid><addsrcrecordid>eNp9UU1r3TAQNKWlSZP8gR6KoGelK8mS7FtDSD8gEAjpWehj9XCwpVfJPuTfV-lLEwql7EHL7szOiOm69wzOGYD-VAE4UxQ4UBCgJR1fdcdMsYFyJeH1c9_zo-5drfcATA5Mve2OhOhhVJofdz--3F7dUWcrBhLnLResHtNK9iU7JDEXEsq2I7ZW-0BiyQuxy5QysX4Kn3d5DtTb4nIiyaa8t2Wd_Iz1tHsT7Vzx7Ok9aTpXd5ff6PXN1--XF9fUy16uVLkQgGMIetTRWSWjZEzJZh57EDgK6XQflNB-BDf4trRaOwsD8sEpr8VJ9_Fwt9n9uWFdzX3eSmqShvd6UIpLEC-onZ3RTCnmtVi_TNWbi6Y1yr5XvKHO_4FqFXCZfE4Ypzb_i8APBF9yrQWj2ZdpseXBMDCPAZlDQKYFZH4HZMZG-vDkeHMLhmfKn0QaQBwAta3SDsvLl_5z9hcEcpkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478662503</pqid></control><display><type>article</type><title>FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles</title><source>Springer Link</source><creator>Hameed, Mehavesh K. ; Parambath, Javad B. M. ; Kanan, Sofian M. ; Mohamed, Ahmed A.</creator><creatorcontrib>Hameed, Mehavesh K. ; Parambath, Javad B. M. ; Kanan, Sofian M. ; Mohamed, Ahmed A.</creatorcontrib><description>Biocompatible and luminescent nanostructures synthesized by capping gold-carbon nanoparticles (HOOC-4-C 6 H 4 -AuNPs) with amino acids tyrosine, tryptophan, and cysteine were used for the quantitative estimation of ranitidine (RNH), a peptic ulcer and gastroesophageal reflux drug. We applied a fluorescence quenching mechanism to investigate the viability of the energy transfer based on gold-carbon nanosensors. Förster resonance energy transfer (FRET) calculations showed a donor–acceptor distance of 1.69 nm (Tyr@AuNPs), 2.27 nm (Trp@AuNPs), and 2.32 nm (Cys@AuNPs). The constant time-resolved fluorescence lifetime measurements supported the static quenching nature. This method was successfully utilized in the detection and quantification of RNH, with a limit of detection (LOD) of 0.174, 0.56, and 0.332 μM for Tyr@AuNP, Trp@AuNP, and Cys@AuNP bioconjugates, respectively. This approach was also successful in the quantification of RNH in spiked serum samples.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-020-03075-9</identifier><identifier>PMID: 33409672</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amino acids ; Analytical Chemistry ; Biochemistry ; Biocompatibility ; Carbon ; Characterization and Evaluation of Materials ; Chemical properties ; Chemistry ; Chemistry and Materials Science ; Composition ; Energy transfer ; Fluorescence ; Fluorescence resonance energy transfer ; Fluorescent indicators ; Food Science ; Gastroesophageal reflux ; Gold ; Laboratory Medicine ; Monitoring/Environmental Analysis ; Nanoparticles ; Peptic ulcers ; Quenching ; Ranitidine ; Research Paper ; Tryptophan ; Tyrosine</subject><ispartof>Analytical and bioanalytical chemistry, 2021-02, Vol.413 (4), p.1117-1125</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-6bdd02edd797fba65f51165650e403e935b74d637c90b8c511a77ba08e28b6c73</citedby><cites>FETCH-LOGICAL-c545t-6bdd02edd797fba65f51165650e403e935b74d637c90b8c511a77ba08e28b6c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33409672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hameed, Mehavesh K.</creatorcontrib><creatorcontrib>Parambath, Javad B. M.</creatorcontrib><creatorcontrib>Kanan, Sofian M.</creatorcontrib><creatorcontrib>Mohamed, Ahmed A.</creatorcontrib><title>FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Biocompatible and luminescent nanostructures synthesized by capping gold-carbon nanoparticles (HOOC-4-C 6 H 4 -AuNPs) with amino acids tyrosine, tryptophan, and cysteine were used for the quantitative estimation of ranitidine (RNH), a peptic ulcer and gastroesophageal reflux drug. We applied a fluorescence quenching mechanism to investigate the viability of the energy transfer based on gold-carbon nanosensors. Förster resonance energy transfer (FRET) calculations showed a donor–acceptor distance of 1.69 nm (Tyr@AuNPs), 2.27 nm (Trp@AuNPs), and 2.32 nm (Cys@AuNPs). The constant time-resolved fluorescence lifetime measurements supported the static quenching nature. This method was successfully utilized in the detection and quantification of RNH, with a limit of detection (LOD) of 0.174, 0.56, and 0.332 μM for Tyr@AuNP, Trp@AuNP, and Cys@AuNP bioconjugates, respectively. This approach was also successful in the quantification of RNH in spiked serum samples.</description><subject>Amino acids</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Biocompatibility</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical properties</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composition</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescent indicators</subject><subject>Food Science</subject><subject>Gastroesophageal reflux</subject><subject>Gold</subject><subject>Laboratory Medicine</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nanoparticles</subject><subject>Peptic ulcers</subject><subject>Quenching</subject><subject>Ranitidine</subject><subject>Research Paper</subject><subject>Tryptophan</subject><subject>Tyrosine</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3TAQNKWlSZP8gR6KoGelK8mS7FtDSD8gEAjpWehj9XCwpVfJPuTfV-lLEwql7EHL7szOiOm69wzOGYD-VAE4UxQ4UBCgJR1fdcdMsYFyJeH1c9_zo-5drfcATA5Mve2OhOhhVJofdz--3F7dUWcrBhLnLResHtNK9iU7JDEXEsq2I7ZW-0BiyQuxy5QysX4Kn3d5DtTb4nIiyaa8t2Wd_Iz1tHsT7Vzx7Ok9aTpXd5ff6PXN1--XF9fUy16uVLkQgGMIetTRWSWjZEzJZh57EDgK6XQflNB-BDf4trRaOwsD8sEpr8VJ9_Fwt9n9uWFdzX3eSmqShvd6UIpLEC-onZ3RTCnmtVi_TNWbi6Y1yr5XvKHO_4FqFXCZfE4Ypzb_i8APBF9yrQWj2ZdpseXBMDCPAZlDQKYFZH4HZMZG-vDkeHMLhmfKn0QaQBwAta3SDsvLl_5z9hcEcpkc</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Hameed, Mehavesh K.</creator><creator>Parambath, Javad B. M.</creator><creator>Kanan, Sofian M.</creator><creator>Mohamed, Ahmed A.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210201</creationdate><title>FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles</title><author>Hameed, Mehavesh K. ; Parambath, Javad B. M. ; Kanan, Sofian M. ; Mohamed, Ahmed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-6bdd02edd797fba65f51165650e403e935b74d637c90b8c511a77ba08e28b6c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Biocompatibility</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical properties</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composition</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescent indicators</topic><topic>Food Science</topic><topic>Gastroesophageal reflux</topic><topic>Gold</topic><topic>Laboratory Medicine</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nanoparticles</topic><topic>Peptic ulcers</topic><topic>Quenching</topic><topic>Ranitidine</topic><topic>Research Paper</topic><topic>Tryptophan</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hameed, Mehavesh K.</creatorcontrib><creatorcontrib>Parambath, Javad B. M.</creatorcontrib><creatorcontrib>Kanan, Sofian M.</creatorcontrib><creatorcontrib>Mohamed, Ahmed A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hameed, Mehavesh K.</au><au>Parambath, Javad B. M.</au><au>Kanan, Sofian M.</au><au>Mohamed, Ahmed A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>413</volume><issue>4</issue><spage>1117</spage><epage>1125</epage><pages>1117-1125</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Biocompatible and luminescent nanostructures synthesized by capping gold-carbon nanoparticles (HOOC-4-C 6 H 4 -AuNPs) with amino acids tyrosine, tryptophan, and cysteine were used for the quantitative estimation of ranitidine (RNH), a peptic ulcer and gastroesophageal reflux drug. We applied a fluorescence quenching mechanism to investigate the viability of the energy transfer based on gold-carbon nanosensors. Förster resonance energy transfer (FRET) calculations showed a donor–acceptor distance of 1.69 nm (Tyr@AuNPs), 2.27 nm (Trp@AuNPs), and 2.32 nm (Cys@AuNPs). The constant time-resolved fluorescence lifetime measurements supported the static quenching nature. This method was successfully utilized in the detection and quantification of RNH, with a limit of detection (LOD) of 0.174, 0.56, and 0.332 μM for Tyr@AuNP, Trp@AuNP, and Cys@AuNP bioconjugates, respectively. This approach was also successful in the quantification of RNH in spiked serum samples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33409672</pmid><doi>10.1007/s00216-020-03075-9</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2021-02, Vol.413 (4), p.1117-1125
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_journals_2478662503
source Springer Link
subjects Amino acids
Analytical Chemistry
Biochemistry
Biocompatibility
Carbon
Characterization and Evaluation of Materials
Chemical properties
Chemistry
Chemistry and Materials Science
Composition
Energy transfer
Fluorescence
Fluorescence resonance energy transfer
Fluorescent indicators
Food Science
Gastroesophageal reflux
Gold
Laboratory Medicine
Monitoring/Environmental Analysis
Nanoparticles
Peptic ulcers
Quenching
Ranitidine
Research Paper
Tryptophan
Tyrosine
title FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FRET-based%20fluorescent%20probe%20for%20drug%20assay%20from%20amino%20acid@gold-carbon%20nanoparticles&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Hameed,%20Mehavesh%20K.&rft.date=2021-02-01&rft.volume=413&rft.issue=4&rft.spage=1117&rft.epage=1125&rft.pages=1117-1125&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-020-03075-9&rft_dat=%3Cgale_proqu%3EA650954462%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-6bdd02edd797fba65f51165650e403e935b74d637c90b8c511a77ba08e28b6c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478662503&rft_id=info:pmid/33409672&rft_galeid=A650954462&rfr_iscdi=true