Loading…
Enhanced N2 affinity of 1T-MoS2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance
The Haber–Bosch process is widely used to convert atmospheric nitrogen (N2) into ammonia (NH3). However, the extreme reaction conditions and abundant carbon released by this process make it important to develop a greener NH3 production method. The electrochemical nitrogen reduction reaction (NRR) is...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (2), p.1230-1239 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1239 |
container_issue | 2 |
container_start_page | 1230 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Patil, Shivaraj B Hung-Lung Chou Yu-Mei, Chen Hsieh, Shang-Hsien Chia-Hao, Chen Chia-Che, Chang Shin-Ren, Li Yi-Cheng, Lee Ying-Sheng, Lin Li, Hsin Chang, Yuan Jay Ying-Huang, Lai Di-Yan, Wang |
description | The Haber–Bosch process is widely used to convert atmospheric nitrogen (N2) into ammonia (NH3). However, the extreme reaction conditions and abundant carbon released by this process make it important to develop a greener NH3 production method. The electrochemical nitrogen reduction reaction (NRR) is an attractive alternative to the Haber–Bosch process. Herein, we demonstrated that molybdenum sulfide on nickel foil (1T-MoS2–Ni) with low crystallinity was an active NRR electrocatalyst. 1T-MoS2–Ni achieved a high faradaic efficiency of 27.66% for the NRR at −0.3 V (vs. RHE) in a LiClO4 electrolyte. In situ X-ray diffraction and ex situ X-ray photoemission analyses showed that lithium ions were intercalated into the 1T-MoS2 layers during the NRR. Moreover, theoretical calculations revealed the differences between six membered rings formed in the 1T-MoS2 and 2H-MoS2 systems with Li intercalation. The bond distances of d(Mo–N) and d(N–Li) of in Li–1T-MoS2 were found to be shorter than those in Li–2H-MoS2, resulting in a lower energy barrier of N2 fixation and higher NRR activity. Therefore, 1T-MoS2–Ni is promising as a scalable and low-cost NRR electrocatalyst with lower power consumption and carbon emission than the Haber–Bosch process. |
doi_str_mv | 10.1039/d0ta10696h |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2478788724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478788724</sourcerecordid><originalsourceid>FETCH-LOGICAL-g654-7511b4cf1351780f91534b5d7d3fd2f665423c82b585b75d37f4f3c84dc612463</originalsourceid><addsrcrecordid>eNo9T0tOwzAQtRBIVKUbTmCJtcHf2FmiqnyktizafZXEduOqsUvsCLrjDhyBm3ESjEAdaWaeRu-9mQHgmuBbgll5p3GqCC7Koj0DI4oFRpKXxfkJK3UJJjHucA6FM7Ecga-ZbyvfGA2XFFbWOu_SEQYLyRotworCN5daWMHBu9fBwEM0gw4ounfUma42fRb2zm9hE3x0Mf3CLF5-f3zOXS6rnItwAtCGHrZumx272hmfcu-CdxU0e9OkPsSjT63JTvBg-kzufm-7Ahe22kcz-e9jsH6YradPaP7y-Dy9n6NtITiSgpCaN5YwQaTCtiSC8VpoqZnV1BaZQ1mjaC2UqKXQTFpu84DrpiCUF2wMbv5sD33Iv8a02YWh93njhnKppFKScvYDBGVyRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478788724</pqid></control><display><type>article</type><title>Enhanced N2 affinity of 1T-MoS2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance</title><source>Royal Society of Chemistry</source><creator>Patil, Shivaraj B ; Hung-Lung Chou ; Yu-Mei, Chen ; Hsieh, Shang-Hsien ; Chia-Hao, Chen ; Chia-Che, Chang ; Shin-Ren, Li ; Yi-Cheng, Lee ; Ying-Sheng, Lin ; Li, Hsin ; Chang, Yuan Jay ; Ying-Huang, Lai ; Di-Yan, Wang</creator><creatorcontrib>Patil, Shivaraj B ; Hung-Lung Chou ; Yu-Mei, Chen ; Hsieh, Shang-Hsien ; Chia-Hao, Chen ; Chia-Che, Chang ; Shin-Ren, Li ; Yi-Cheng, Lee ; Ying-Sheng, Lin ; Li, Hsin ; Chang, Yuan Jay ; Ying-Huang, Lai ; Di-Yan, Wang</creatorcontrib><description>The Haber–Bosch process is widely used to convert atmospheric nitrogen (N2) into ammonia (NH3). However, the extreme reaction conditions and abundant carbon released by this process make it important to develop a greener NH3 production method. The electrochemical nitrogen reduction reaction (NRR) is an attractive alternative to the Haber–Bosch process. Herein, we demonstrated that molybdenum sulfide on nickel foil (1T-MoS2–Ni) with low crystallinity was an active NRR electrocatalyst. 1T-MoS2–Ni achieved a high faradaic efficiency of 27.66% for the NRR at −0.3 V (vs. RHE) in a LiClO4 electrolyte. In situ X-ray diffraction and ex situ X-ray photoemission analyses showed that lithium ions were intercalated into the 1T-MoS2 layers during the NRR. Moreover, theoretical calculations revealed the differences between six membered rings formed in the 1T-MoS2 and 2H-MoS2 systems with Li intercalation. The bond distances of d(Mo–N) and d(N–Li) of in Li–1T-MoS2 were found to be shorter than those in Li–2H-MoS2, resulting in a lower energy barrier of N2 fixation and higher NRR activity. Therefore, 1T-MoS2–Ni is promising as a scalable and low-cost NRR electrocatalyst with lower power consumption and carbon emission than the Haber–Bosch process.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta10696h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Calibration ; Carbon ; Chemical reduction ; Electrocatalysts ; Electrochemistry ; Haber Bosch process ; Lithium ; Lithium ions ; Metal foils ; Molybdenum ; Molybdenum disulfide ; Nickel ; Nitrogen ; Nitrogen fixation ; Nitrogenation ; Photoelectric emission ; Power consumption ; Production methods ; Sulfide ; X-ray diffraction</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (2), p.1230-1239</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Patil, Shivaraj B</creatorcontrib><creatorcontrib>Hung-Lung Chou</creatorcontrib><creatorcontrib>Yu-Mei, Chen</creatorcontrib><creatorcontrib>Hsieh, Shang-Hsien</creatorcontrib><creatorcontrib>Chia-Hao, Chen</creatorcontrib><creatorcontrib>Chia-Che, Chang</creatorcontrib><creatorcontrib>Shin-Ren, Li</creatorcontrib><creatorcontrib>Yi-Cheng, Lee</creatorcontrib><creatorcontrib>Ying-Sheng, Lin</creatorcontrib><creatorcontrib>Li, Hsin</creatorcontrib><creatorcontrib>Chang, Yuan Jay</creatorcontrib><creatorcontrib>Ying-Huang, Lai</creatorcontrib><creatorcontrib>Di-Yan, Wang</creatorcontrib><title>Enhanced N2 affinity of 1T-MoS2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The Haber–Bosch process is widely used to convert atmospheric nitrogen (N2) into ammonia (NH3). However, the extreme reaction conditions and abundant carbon released by this process make it important to develop a greener NH3 production method. The electrochemical nitrogen reduction reaction (NRR) is an attractive alternative to the Haber–Bosch process. Herein, we demonstrated that molybdenum sulfide on nickel foil (1T-MoS2–Ni) with low crystallinity was an active NRR electrocatalyst. 1T-MoS2–Ni achieved a high faradaic efficiency of 27.66% for the NRR at −0.3 V (vs. RHE) in a LiClO4 electrolyte. In situ X-ray diffraction and ex situ X-ray photoemission analyses showed that lithium ions were intercalated into the 1T-MoS2 layers during the NRR. Moreover, theoretical calculations revealed the differences between six membered rings formed in the 1T-MoS2 and 2H-MoS2 systems with Li intercalation. The bond distances of d(Mo–N) and d(N–Li) of in Li–1T-MoS2 were found to be shorter than those in Li–2H-MoS2, resulting in a lower energy barrier of N2 fixation and higher NRR activity. Therefore, 1T-MoS2–Ni is promising as a scalable and low-cost NRR electrocatalyst with lower power consumption and carbon emission than the Haber–Bosch process.</description><subject>Ammonia</subject><subject>Calibration</subject><subject>Carbon</subject><subject>Chemical reduction</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Haber Bosch process</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Metal foils</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Nickel</subject><subject>Nitrogen</subject><subject>Nitrogen fixation</subject><subject>Nitrogenation</subject><subject>Photoelectric emission</subject><subject>Power consumption</subject><subject>Production methods</subject><subject>Sulfide</subject><subject>X-ray diffraction</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9T0tOwzAQtRBIVKUbTmCJtcHf2FmiqnyktizafZXEduOqsUvsCLrjDhyBm3ESjEAdaWaeRu-9mQHgmuBbgll5p3GqCC7Koj0DI4oFRpKXxfkJK3UJJjHucA6FM7Ecga-ZbyvfGA2XFFbWOu_SEQYLyRotworCN5daWMHBu9fBwEM0gw4ounfUma42fRb2zm9hE3x0Mf3CLF5-f3zOXS6rnItwAtCGHrZumx272hmfcu-CdxU0e9OkPsSjT63JTvBg-kzufm-7Ahe22kcz-e9jsH6YradPaP7y-Dy9n6NtITiSgpCaN5YwQaTCtiSC8VpoqZnV1BaZQ1mjaC2UqKXQTFpu84DrpiCUF2wMbv5sD33Iv8a02YWh93njhnKppFKScvYDBGVyRg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Patil, Shivaraj B</creator><creator>Hung-Lung Chou</creator><creator>Yu-Mei, Chen</creator><creator>Hsieh, Shang-Hsien</creator><creator>Chia-Hao, Chen</creator><creator>Chia-Che, Chang</creator><creator>Shin-Ren, Li</creator><creator>Yi-Cheng, Lee</creator><creator>Ying-Sheng, Lin</creator><creator>Li, Hsin</creator><creator>Chang, Yuan Jay</creator><creator>Ying-Huang, Lai</creator><creator>Di-Yan, Wang</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210101</creationdate><title>Enhanced N2 affinity of 1T-MoS2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance</title><author>Patil, Shivaraj B ; Hung-Lung Chou ; Yu-Mei, Chen ; Hsieh, Shang-Hsien ; Chia-Hao, Chen ; Chia-Che, Chang ; Shin-Ren, Li ; Yi-Cheng, Lee ; Ying-Sheng, Lin ; Li, Hsin ; Chang, Yuan Jay ; Ying-Huang, Lai ; Di-Yan, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g654-7511b4cf1351780f91534b5d7d3fd2f665423c82b585b75d37f4f3c84dc612463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonia</topic><topic>Calibration</topic><topic>Carbon</topic><topic>Chemical reduction</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Haber Bosch process</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Metal foils</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Nickel</topic><topic>Nitrogen</topic><topic>Nitrogen fixation</topic><topic>Nitrogenation</topic><topic>Photoelectric emission</topic><topic>Power consumption</topic><topic>Production methods</topic><topic>Sulfide</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patil, Shivaraj B</creatorcontrib><creatorcontrib>Hung-Lung Chou</creatorcontrib><creatorcontrib>Yu-Mei, Chen</creatorcontrib><creatorcontrib>Hsieh, Shang-Hsien</creatorcontrib><creatorcontrib>Chia-Hao, Chen</creatorcontrib><creatorcontrib>Chia-Che, Chang</creatorcontrib><creatorcontrib>Shin-Ren, Li</creatorcontrib><creatorcontrib>Yi-Cheng, Lee</creatorcontrib><creatorcontrib>Ying-Sheng, Lin</creatorcontrib><creatorcontrib>Li, Hsin</creatorcontrib><creatorcontrib>Chang, Yuan Jay</creatorcontrib><creatorcontrib>Ying-Huang, Lai</creatorcontrib><creatorcontrib>Di-Yan, Wang</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patil, Shivaraj B</au><au>Hung-Lung Chou</au><au>Yu-Mei, Chen</au><au>Hsieh, Shang-Hsien</au><au>Chia-Hao, Chen</au><au>Chia-Che, Chang</au><au>Shin-Ren, Li</au><au>Yi-Cheng, Lee</au><au>Ying-Sheng, Lin</au><au>Li, Hsin</au><au>Chang, Yuan Jay</au><au>Ying-Huang, Lai</au><au>Di-Yan, Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced N2 affinity of 1T-MoS2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>2</issue><spage>1230</spage><epage>1239</epage><pages>1230-1239</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The Haber–Bosch process is widely used to convert atmospheric nitrogen (N2) into ammonia (NH3). However, the extreme reaction conditions and abundant carbon released by this process make it important to develop a greener NH3 production method. The electrochemical nitrogen reduction reaction (NRR) is an attractive alternative to the Haber–Bosch process. Herein, we demonstrated that molybdenum sulfide on nickel foil (1T-MoS2–Ni) with low crystallinity was an active NRR electrocatalyst. 1T-MoS2–Ni achieved a high faradaic efficiency of 27.66% for the NRR at −0.3 V (vs. RHE) in a LiClO4 electrolyte. In situ X-ray diffraction and ex situ X-ray photoemission analyses showed that lithium ions were intercalated into the 1T-MoS2 layers during the NRR. Moreover, theoretical calculations revealed the differences between six membered rings formed in the 1T-MoS2 and 2H-MoS2 systems with Li intercalation. The bond distances of d(Mo–N) and d(N–Li) of in Li–1T-MoS2 were found to be shorter than those in Li–2H-MoS2, resulting in a lower energy barrier of N2 fixation and higher NRR activity. Therefore, 1T-MoS2–Ni is promising as a scalable and low-cost NRR electrocatalyst with lower power consumption and carbon emission than the Haber–Bosch process.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta10696h</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (2), p.1230-1239 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2478788724 |
source | Royal Society of Chemistry |
subjects | Ammonia Calibration Carbon Chemical reduction Electrocatalysts Electrochemistry Haber Bosch process Lithium Lithium ions Metal foils Molybdenum Molybdenum disulfide Nickel Nitrogen Nitrogen fixation Nitrogenation Photoelectric emission Power consumption Production methods Sulfide X-ray diffraction |
title | Enhanced N2 affinity of 1T-MoS2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20N2%20affinity%20of%201T-MoS2%20with%20a%20unique%20pseudo-six-membered%20ring%20consisting%20of%20N%E2%80%93Li%E2%80%93S%E2%80%93Mo%E2%80%93S%E2%80%93Mo%20for%20high%20ambient%20ammonia%20electrosynthesis%20performance&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Patil,%20Shivaraj%20B&rft.date=2021-01-01&rft.volume=9&rft.issue=2&rft.spage=1230&rft.epage=1239&rft.pages=1230-1239&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta10696h&rft_dat=%3Cproquest%3E2478788724%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g654-7511b4cf1351780f91534b5d7d3fd2f665423c82b585b75d37f4f3c84dc612463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478788724&rft_id=info:pmid/&rfr_iscdi=true |