Loading…

Enhanced N2 affinity of 1T-MoS2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance

The Haber–Bosch process is widely used to convert atmospheric nitrogen (N2) into ammonia (NH3). However, the extreme reaction conditions and abundant carbon released by this process make it important to develop a greener NH3 production method. The electrochemical nitrogen reduction reaction (NRR) is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (2), p.1230-1239
Main Authors: Patil, Shivaraj B, Hung-Lung Chou, Yu-Mei, Chen, Hsieh, Shang-Hsien, Chia-Hao, Chen, Chia-Che, Chang, Shin-Ren, Li, Yi-Cheng, Lee, Ying-Sheng, Lin, Li, Hsin, Chang, Yuan Jay, Ying-Huang, Lai, Di-Yan, Wang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1239
container_issue 2
container_start_page 1230
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Patil, Shivaraj B
Hung-Lung Chou
Yu-Mei, Chen
Hsieh, Shang-Hsien
Chia-Hao, Chen
Chia-Che, Chang
Shin-Ren, Li
Yi-Cheng, Lee
Ying-Sheng, Lin
Li, Hsin
Chang, Yuan Jay
Ying-Huang, Lai
Di-Yan, Wang
description The Haber–Bosch process is widely used to convert atmospheric nitrogen (N2) into ammonia (NH3). However, the extreme reaction conditions and abundant carbon released by this process make it important to develop a greener NH3 production method. The electrochemical nitrogen reduction reaction (NRR) is an attractive alternative to the Haber–Bosch process. Herein, we demonstrated that molybdenum sulfide on nickel foil (1T-MoS2–Ni) with low crystallinity was an active NRR electrocatalyst. 1T-MoS2–Ni achieved a high faradaic efficiency of 27.66% for the NRR at −0.3 V (vs. RHE) in a LiClO4 electrolyte. In situ X-ray diffraction and ex situ X-ray photoemission analyses showed that lithium ions were intercalated into the 1T-MoS2 layers during the NRR. Moreover, theoretical calculations revealed the differences between six membered rings formed in the 1T-MoS2 and 2H-MoS2 systems with Li intercalation. The bond distances of d(Mo–N) and d(N–Li) of in Li–1T-MoS2 were found to be shorter than those in Li–2H-MoS2, resulting in a lower energy barrier of N2 fixation and higher NRR activity. Therefore, 1T-MoS2–Ni is promising as a scalable and low-cost NRR electrocatalyst with lower power consumption and carbon emission than the Haber–Bosch process.
doi_str_mv 10.1039/d0ta10696h
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2478788724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478788724</sourcerecordid><originalsourceid>FETCH-LOGICAL-g654-7511b4cf1351780f91534b5d7d3fd2f665423c82b585b75d37f4f3c84dc612463</originalsourceid><addsrcrecordid>eNo9T0tOwzAQtRBIVKUbTmCJtcHf2FmiqnyktizafZXEduOqsUvsCLrjDhyBm3ESjEAdaWaeRu-9mQHgmuBbgll5p3GqCC7Koj0DI4oFRpKXxfkJK3UJJjHucA6FM7Ecga-ZbyvfGA2XFFbWOu_SEQYLyRotworCN5daWMHBu9fBwEM0gw4ounfUma42fRb2zm9hE3x0Mf3CLF5-f3zOXS6rnItwAtCGHrZumx272hmfcu-CdxU0e9OkPsSjT63JTvBg-kzufm-7Ahe22kcz-e9jsH6YradPaP7y-Dy9n6NtITiSgpCaN5YwQaTCtiSC8VpoqZnV1BaZQ1mjaC2UqKXQTFpu84DrpiCUF2wMbv5sD33Iv8a02YWh93njhnKppFKScvYDBGVyRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478788724</pqid></control><display><type>article</type><title>Enhanced N2 affinity of 1T-MoS2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance</title><source>Royal Society of Chemistry</source><creator>Patil, Shivaraj B ; Hung-Lung Chou ; Yu-Mei, Chen ; Hsieh, Shang-Hsien ; Chia-Hao, Chen ; Chia-Che, Chang ; Shin-Ren, Li ; Yi-Cheng, Lee ; Ying-Sheng, Lin ; Li, Hsin ; Chang, Yuan Jay ; Ying-Huang, Lai ; Di-Yan, Wang</creator><creatorcontrib>Patil, Shivaraj B ; Hung-Lung Chou ; Yu-Mei, Chen ; Hsieh, Shang-Hsien ; Chia-Hao, Chen ; Chia-Che, Chang ; Shin-Ren, Li ; Yi-Cheng, Lee ; Ying-Sheng, Lin ; Li, Hsin ; Chang, Yuan Jay ; Ying-Huang, Lai ; Di-Yan, Wang</creatorcontrib><description>The Haber–Bosch process is widely used to convert atmospheric nitrogen (N2) into ammonia (NH3). However, the extreme reaction conditions and abundant carbon released by this process make it important to develop a greener NH3 production method. The electrochemical nitrogen reduction reaction (NRR) is an attractive alternative to the Haber–Bosch process. Herein, we demonstrated that molybdenum sulfide on nickel foil (1T-MoS2–Ni) with low crystallinity was an active NRR electrocatalyst. 1T-MoS2–Ni achieved a high faradaic efficiency of 27.66% for the NRR at −0.3 V (vs. RHE) in a LiClO4 electrolyte. In situ X-ray diffraction and ex situ X-ray photoemission analyses showed that lithium ions were intercalated into the 1T-MoS2 layers during the NRR. Moreover, theoretical calculations revealed the differences between six membered rings formed in the 1T-MoS2 and 2H-MoS2 systems with Li intercalation. The bond distances of d(Mo–N) and d(N–Li) of in Li–1T-MoS2 were found to be shorter than those in Li–2H-MoS2, resulting in a lower energy barrier of N2 fixation and higher NRR activity. Therefore, 1T-MoS2–Ni is promising as a scalable and low-cost NRR electrocatalyst with lower power consumption and carbon emission than the Haber–Bosch process.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta10696h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Calibration ; Carbon ; Chemical reduction ; Electrocatalysts ; Electrochemistry ; Haber Bosch process ; Lithium ; Lithium ions ; Metal foils ; Molybdenum ; Molybdenum disulfide ; Nickel ; Nitrogen ; Nitrogen fixation ; Nitrogenation ; Photoelectric emission ; Power consumption ; Production methods ; Sulfide ; X-ray diffraction</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (2), p.1230-1239</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Patil, Shivaraj B</creatorcontrib><creatorcontrib>Hung-Lung Chou</creatorcontrib><creatorcontrib>Yu-Mei, Chen</creatorcontrib><creatorcontrib>Hsieh, Shang-Hsien</creatorcontrib><creatorcontrib>Chia-Hao, Chen</creatorcontrib><creatorcontrib>Chia-Che, Chang</creatorcontrib><creatorcontrib>Shin-Ren, Li</creatorcontrib><creatorcontrib>Yi-Cheng, Lee</creatorcontrib><creatorcontrib>Ying-Sheng, Lin</creatorcontrib><creatorcontrib>Li, Hsin</creatorcontrib><creatorcontrib>Chang, Yuan Jay</creatorcontrib><creatorcontrib>Ying-Huang, Lai</creatorcontrib><creatorcontrib>Di-Yan, Wang</creatorcontrib><title>Enhanced N2 affinity of 1T-MoS2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The Haber–Bosch process is widely used to convert atmospheric nitrogen (N2) into ammonia (NH3). However, the extreme reaction conditions and abundant carbon released by this process make it important to develop a greener NH3 production method. The electrochemical nitrogen reduction reaction (NRR) is an attractive alternative to the Haber–Bosch process. Herein, we demonstrated that molybdenum sulfide on nickel foil (1T-MoS2–Ni) with low crystallinity was an active NRR electrocatalyst. 1T-MoS2–Ni achieved a high faradaic efficiency of 27.66% for the NRR at −0.3 V (vs. RHE) in a LiClO4 electrolyte. In situ X-ray diffraction and ex situ X-ray photoemission analyses showed that lithium ions were intercalated into the 1T-MoS2 layers during the NRR. Moreover, theoretical calculations revealed the differences between six membered rings formed in the 1T-MoS2 and 2H-MoS2 systems with Li intercalation. The bond distances of d(Mo–N) and d(N–Li) of in Li–1T-MoS2 were found to be shorter than those in Li–2H-MoS2, resulting in a lower energy barrier of N2 fixation and higher NRR activity. Therefore, 1T-MoS2–Ni is promising as a scalable and low-cost NRR electrocatalyst with lower power consumption and carbon emission than the Haber–Bosch process.</description><subject>Ammonia</subject><subject>Calibration</subject><subject>Carbon</subject><subject>Chemical reduction</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Haber Bosch process</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Metal foils</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Nickel</subject><subject>Nitrogen</subject><subject>Nitrogen fixation</subject><subject>Nitrogenation</subject><subject>Photoelectric emission</subject><subject>Power consumption</subject><subject>Production methods</subject><subject>Sulfide</subject><subject>X-ray diffraction</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9T0tOwzAQtRBIVKUbTmCJtcHf2FmiqnyktizafZXEduOqsUvsCLrjDhyBm3ESjEAdaWaeRu-9mQHgmuBbgll5p3GqCC7Koj0DI4oFRpKXxfkJK3UJJjHucA6FM7Ecga-ZbyvfGA2XFFbWOu_SEQYLyRotworCN5daWMHBu9fBwEM0gw4ounfUma42fRb2zm9hE3x0Mf3CLF5-f3zOXS6rnItwAtCGHrZumx272hmfcu-CdxU0e9OkPsSjT63JTvBg-kzufm-7Ahe22kcz-e9jsH6YradPaP7y-Dy9n6NtITiSgpCaN5YwQaTCtiSC8VpoqZnV1BaZQ1mjaC2UqKXQTFpu84DrpiCUF2wMbv5sD33Iv8a02YWh93njhnKppFKScvYDBGVyRg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Patil, Shivaraj B</creator><creator>Hung-Lung Chou</creator><creator>Yu-Mei, Chen</creator><creator>Hsieh, Shang-Hsien</creator><creator>Chia-Hao, Chen</creator><creator>Chia-Che, Chang</creator><creator>Shin-Ren, Li</creator><creator>Yi-Cheng, Lee</creator><creator>Ying-Sheng, Lin</creator><creator>Li, Hsin</creator><creator>Chang, Yuan Jay</creator><creator>Ying-Huang, Lai</creator><creator>Di-Yan, Wang</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210101</creationdate><title>Enhanced N2 affinity of 1T-MoS2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance</title><author>Patil, Shivaraj B ; Hung-Lung Chou ; Yu-Mei, Chen ; Hsieh, Shang-Hsien ; Chia-Hao, Chen ; Chia-Che, Chang ; Shin-Ren, Li ; Yi-Cheng, Lee ; Ying-Sheng, Lin ; Li, Hsin ; Chang, Yuan Jay ; Ying-Huang, Lai ; Di-Yan, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g654-7511b4cf1351780f91534b5d7d3fd2f665423c82b585b75d37f4f3c84dc612463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonia</topic><topic>Calibration</topic><topic>Carbon</topic><topic>Chemical reduction</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Haber Bosch process</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Metal foils</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Nickel</topic><topic>Nitrogen</topic><topic>Nitrogen fixation</topic><topic>Nitrogenation</topic><topic>Photoelectric emission</topic><topic>Power consumption</topic><topic>Production methods</topic><topic>Sulfide</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patil, Shivaraj B</creatorcontrib><creatorcontrib>Hung-Lung Chou</creatorcontrib><creatorcontrib>Yu-Mei, Chen</creatorcontrib><creatorcontrib>Hsieh, Shang-Hsien</creatorcontrib><creatorcontrib>Chia-Hao, Chen</creatorcontrib><creatorcontrib>Chia-Che, Chang</creatorcontrib><creatorcontrib>Shin-Ren, Li</creatorcontrib><creatorcontrib>Yi-Cheng, Lee</creatorcontrib><creatorcontrib>Ying-Sheng, Lin</creatorcontrib><creatorcontrib>Li, Hsin</creatorcontrib><creatorcontrib>Chang, Yuan Jay</creatorcontrib><creatorcontrib>Ying-Huang, Lai</creatorcontrib><creatorcontrib>Di-Yan, Wang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patil, Shivaraj B</au><au>Hung-Lung Chou</au><au>Yu-Mei, Chen</au><au>Hsieh, Shang-Hsien</au><au>Chia-Hao, Chen</au><au>Chia-Che, Chang</au><au>Shin-Ren, Li</au><au>Yi-Cheng, Lee</au><au>Ying-Sheng, Lin</au><au>Li, Hsin</au><au>Chang, Yuan Jay</au><au>Ying-Huang, Lai</au><au>Di-Yan, Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced N2 affinity of 1T-MoS2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>2</issue><spage>1230</spage><epage>1239</epage><pages>1230-1239</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The Haber–Bosch process is widely used to convert atmospheric nitrogen (N2) into ammonia (NH3). However, the extreme reaction conditions and abundant carbon released by this process make it important to develop a greener NH3 production method. The electrochemical nitrogen reduction reaction (NRR) is an attractive alternative to the Haber–Bosch process. Herein, we demonstrated that molybdenum sulfide on nickel foil (1T-MoS2–Ni) with low crystallinity was an active NRR electrocatalyst. 1T-MoS2–Ni achieved a high faradaic efficiency of 27.66% for the NRR at −0.3 V (vs. RHE) in a LiClO4 electrolyte. In situ X-ray diffraction and ex situ X-ray photoemission analyses showed that lithium ions were intercalated into the 1T-MoS2 layers during the NRR. Moreover, theoretical calculations revealed the differences between six membered rings formed in the 1T-MoS2 and 2H-MoS2 systems with Li intercalation. The bond distances of d(Mo–N) and d(N–Li) of in Li–1T-MoS2 were found to be shorter than those in Li–2H-MoS2, resulting in a lower energy barrier of N2 fixation and higher NRR activity. Therefore, 1T-MoS2–Ni is promising as a scalable and low-cost NRR electrocatalyst with lower power consumption and carbon emission than the Haber–Bosch process.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta10696h</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (2), p.1230-1239
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2478788724
source Royal Society of Chemistry
subjects Ammonia
Calibration
Carbon
Chemical reduction
Electrocatalysts
Electrochemistry
Haber Bosch process
Lithium
Lithium ions
Metal foils
Molybdenum
Molybdenum disulfide
Nickel
Nitrogen
Nitrogen fixation
Nitrogenation
Photoelectric emission
Power consumption
Production methods
Sulfide
X-ray diffraction
title Enhanced N2 affinity of 1T-MoS2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20N2%20affinity%20of%201T-MoS2%20with%20a%20unique%20pseudo-six-membered%20ring%20consisting%20of%20N%E2%80%93Li%E2%80%93S%E2%80%93Mo%E2%80%93S%E2%80%93Mo%20for%20high%20ambient%20ammonia%20electrosynthesis%20performance&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Patil,%20Shivaraj%20B&rft.date=2021-01-01&rft.volume=9&rft.issue=2&rft.spage=1230&rft.epage=1239&rft.pages=1230-1239&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta10696h&rft_dat=%3Cproquest%3E2478788724%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g654-7511b4cf1351780f91534b5d7d3fd2f665423c82b585b75d37f4f3c84dc612463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478788724&rft_id=info:pmid/&rfr_iscdi=true