Loading…

About the influence of the colloidal magnetic nanoparticles coating on the specific loss power in magnetic hyperthermia

[Display omitted] •Simulation of the nanoparticle coating influence on the heat generation by magnetic.•Simulation of the self-organisation of colloidal nanoparticles.•Simulation of the Néel magnetic relaxation time for interacting magnetic nanoparticles.•The effective magnetic relaxation time is us...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials 2021-02, Vol.519, p.167451, Article 167451
Main Authors: Osaci, Mihaela, Cacciola, Matteo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-6d68f28913c215a5e25b1fd954c0db7d71ae89eedeb74913538cff75a72469e23
cites cdi_FETCH-LOGICAL-c328t-6d68f28913c215a5e25b1fd954c0db7d71ae89eedeb74913538cff75a72469e23
container_end_page
container_issue
container_start_page 167451
container_title Journal of magnetism and magnetic materials
container_volume 519
creator Osaci, Mihaela
Cacciola, Matteo
description [Display omitted] •Simulation of the nanoparticle coating influence on the heat generation by magnetic.•Simulation of the self-organisation of colloidal nanoparticles.•Simulation of the Néel magnetic relaxation time for interacting magnetic nanoparticles.•The effective magnetic relaxation time is used in the specific loss power (SLP). The current magnetic hyperthermia with nanoparticles is a method of destroying cancer cells, increasingly studied theoretically and experimentally. The colloidal magnetic nanoparticle systems used in this method have a pronounced agglomeration tendency that leads to the blocking of blood vessels in the case of intravenous administration of the nanoparticles. For nanoparticle dispersion stability and biocompatibility, the particles are covered with an organic layer. The influence of nanoparticle coating on the generation of heat by magnetic hyperthermia is very little studied. In this paper, we theoretically study, by numerical simulation, the way in which the nanoparticle coating affects the agglomeration tendency of the nanoparticles, as well as the specific loss power which characterises the nanoparticle performance in the generation of heat by magnetic hyperthermia. For this purpose, we propose a theoretical model. The self-organisation of colloidal nanoparticles will be simulated using a Langevin dynamics stochastic method based on an effective Verlet-type algorithm, then the magnetic relaxation time used in the specific loss power (SLP) relation, obtained based on the theory of magnetic fluid losses from Rosensweig.
doi_str_mv 10.1016/j.jmmm.2020.167451
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478823231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885320324185</els_id><sourcerecordid>2478823231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-6d68f28913c215a5e25b1fd954c0db7d71ae89eedeb74913538cff75a72469e23</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz13z0TYpeFkWv2DBi55Dmk52U9qmJl2X_femVvDmaYbheWeGB6FbglcEk-K-WTVd160opnFQ8CwnZ2hBBGdpxoviHC0ww1kqRM4u0VUIDcaYZKJYoOO6cocxGfeQ2N60B-g1JM78DLRrW2dr1Sad2vUwWp30qneD8rFtIURAjbbfJa7_4cMA2ppItS6EZHBH8HHpX3h_GsBH0HdWXaMLo9oAN791iT6eHt83L-n27fl1s96mmlExpkVdCENFSZimJFc50Lwipi7zTOO64jUnCkQJUEPFs0jlTGhjeK44zYoSKFuiu3nv4N3nAcIoG3fwfTwpacaFoIwyEik6U9rH1z0YOXjbKX-SBMtJsGzkJFhOguUsOIYe5hDE_78seBm0nfzV1oMeZe3sf_Fv5lOGIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478823231</pqid></control><display><type>article</type><title>About the influence of the colloidal magnetic nanoparticles coating on the specific loss power in magnetic hyperthermia</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Osaci, Mihaela ; Cacciola, Matteo</creator><creatorcontrib>Osaci, Mihaela ; Cacciola, Matteo</creatorcontrib><description>[Display omitted] •Simulation of the nanoparticle coating influence on the heat generation by magnetic.•Simulation of the self-organisation of colloidal nanoparticles.•Simulation of the Néel magnetic relaxation time for interacting magnetic nanoparticles.•The effective magnetic relaxation time is used in the specific loss power (SLP). The current magnetic hyperthermia with nanoparticles is a method of destroying cancer cells, increasingly studied theoretically and experimentally. The colloidal magnetic nanoparticle systems used in this method have a pronounced agglomeration tendency that leads to the blocking of blood vessels in the case of intravenous administration of the nanoparticles. For nanoparticle dispersion stability and biocompatibility, the particles are covered with an organic layer. The influence of nanoparticle coating on the generation of heat by magnetic hyperthermia is very little studied. In this paper, we theoretically study, by numerical simulation, the way in which the nanoparticle coating affects the agglomeration tendency of the nanoparticles, as well as the specific loss power which characterises the nanoparticle performance in the generation of heat by magnetic hyperthermia. For this purpose, we propose a theoretical model. The self-organisation of colloidal nanoparticles will be simulated using a Langevin dynamics stochastic method based on an effective Verlet-type algorithm, then the magnetic relaxation time used in the specific loss power (SLP) relation, obtained based on the theory of magnetic fluid losses from Rosensweig.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2020.167451</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agglomeration ; Algorithms ; Biocompatibility ; Blood vessels ; Coating ; Colloid ; Colloids ; Computer simulation ; Fever ; Hyperthermia ; Langevin dynamics ; Magnetic fluids ; Magnetic hyperthermia ; Magnetic induction ; Magnetic relaxation ; Mathematical models ; Nanoparticles ; Nanoparticles coating ; Relaxation time ; Specific loss power</subject><ispartof>Journal of magnetism and magnetic materials, 2021-02, Vol.519, p.167451, Article 167451</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-6d68f28913c215a5e25b1fd954c0db7d71ae89eedeb74913538cff75a72469e23</citedby><cites>FETCH-LOGICAL-c328t-6d68f28913c215a5e25b1fd954c0db7d71ae89eedeb74913538cff75a72469e23</cites><orcidid>0000-0001-7795-4396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Osaci, Mihaela</creatorcontrib><creatorcontrib>Cacciola, Matteo</creatorcontrib><title>About the influence of the colloidal magnetic nanoparticles coating on the specific loss power in magnetic hyperthermia</title><title>Journal of magnetism and magnetic materials</title><description>[Display omitted] •Simulation of the nanoparticle coating influence on the heat generation by magnetic.•Simulation of the self-organisation of colloidal nanoparticles.•Simulation of the Néel magnetic relaxation time for interacting magnetic nanoparticles.•The effective magnetic relaxation time is used in the specific loss power (SLP). The current magnetic hyperthermia with nanoparticles is a method of destroying cancer cells, increasingly studied theoretically and experimentally. The colloidal magnetic nanoparticle systems used in this method have a pronounced agglomeration tendency that leads to the blocking of blood vessels in the case of intravenous administration of the nanoparticles. For nanoparticle dispersion stability and biocompatibility, the particles are covered with an organic layer. The influence of nanoparticle coating on the generation of heat by magnetic hyperthermia is very little studied. In this paper, we theoretically study, by numerical simulation, the way in which the nanoparticle coating affects the agglomeration tendency of the nanoparticles, as well as the specific loss power which characterises the nanoparticle performance in the generation of heat by magnetic hyperthermia. For this purpose, we propose a theoretical model. The self-organisation of colloidal nanoparticles will be simulated using a Langevin dynamics stochastic method based on an effective Verlet-type algorithm, then the magnetic relaxation time used in the specific loss power (SLP) relation, obtained based on the theory of magnetic fluid losses from Rosensweig.</description><subject>Agglomeration</subject><subject>Algorithms</subject><subject>Biocompatibility</subject><subject>Blood vessels</subject><subject>Coating</subject><subject>Colloid</subject><subject>Colloids</subject><subject>Computer simulation</subject><subject>Fever</subject><subject>Hyperthermia</subject><subject>Langevin dynamics</subject><subject>Magnetic fluids</subject><subject>Magnetic hyperthermia</subject><subject>Magnetic induction</subject><subject>Magnetic relaxation</subject><subject>Mathematical models</subject><subject>Nanoparticles</subject><subject>Nanoparticles coating</subject><subject>Relaxation time</subject><subject>Specific loss power</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz13z0TYpeFkWv2DBi55Dmk52U9qmJl2X_femVvDmaYbheWeGB6FbglcEk-K-WTVd160opnFQ8CwnZ2hBBGdpxoviHC0ww1kqRM4u0VUIDcaYZKJYoOO6cocxGfeQ2N60B-g1JM78DLRrW2dr1Sad2vUwWp30qneD8rFtIURAjbbfJa7_4cMA2ppItS6EZHBH8HHpX3h_GsBH0HdWXaMLo9oAN791iT6eHt83L-n27fl1s96mmlExpkVdCENFSZimJFc50Lwipi7zTOO64jUnCkQJUEPFs0jlTGhjeK44zYoSKFuiu3nv4N3nAcIoG3fwfTwpacaFoIwyEik6U9rH1z0YOXjbKX-SBMtJsGzkJFhOguUsOIYe5hDE_78seBm0nfzV1oMeZe3sf_Fv5lOGIg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Osaci, Mihaela</creator><creator>Cacciola, Matteo</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7795-4396</orcidid></search><sort><creationdate>20210201</creationdate><title>About the influence of the colloidal magnetic nanoparticles coating on the specific loss power in magnetic hyperthermia</title><author>Osaci, Mihaela ; Cacciola, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-6d68f28913c215a5e25b1fd954c0db7d71ae89eedeb74913538cff75a72469e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomeration</topic><topic>Algorithms</topic><topic>Biocompatibility</topic><topic>Blood vessels</topic><topic>Coating</topic><topic>Colloid</topic><topic>Colloids</topic><topic>Computer simulation</topic><topic>Fever</topic><topic>Hyperthermia</topic><topic>Langevin dynamics</topic><topic>Magnetic fluids</topic><topic>Magnetic hyperthermia</topic><topic>Magnetic induction</topic><topic>Magnetic relaxation</topic><topic>Mathematical models</topic><topic>Nanoparticles</topic><topic>Nanoparticles coating</topic><topic>Relaxation time</topic><topic>Specific loss power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osaci, Mihaela</creatorcontrib><creatorcontrib>Cacciola, Matteo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osaci, Mihaela</au><au>Cacciola, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About the influence of the colloidal magnetic nanoparticles coating on the specific loss power in magnetic hyperthermia</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>519</volume><spage>167451</spage><pages>167451-</pages><artnum>167451</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>[Display omitted] •Simulation of the nanoparticle coating influence on the heat generation by magnetic.•Simulation of the self-organisation of colloidal nanoparticles.•Simulation of the Néel magnetic relaxation time for interacting magnetic nanoparticles.•The effective magnetic relaxation time is used in the specific loss power (SLP). The current magnetic hyperthermia with nanoparticles is a method of destroying cancer cells, increasingly studied theoretically and experimentally. The colloidal magnetic nanoparticle systems used in this method have a pronounced agglomeration tendency that leads to the blocking of blood vessels in the case of intravenous administration of the nanoparticles. For nanoparticle dispersion stability and biocompatibility, the particles are covered with an organic layer. The influence of nanoparticle coating on the generation of heat by magnetic hyperthermia is very little studied. In this paper, we theoretically study, by numerical simulation, the way in which the nanoparticle coating affects the agglomeration tendency of the nanoparticles, as well as the specific loss power which characterises the nanoparticle performance in the generation of heat by magnetic hyperthermia. For this purpose, we propose a theoretical model. The self-organisation of colloidal nanoparticles will be simulated using a Langevin dynamics stochastic method based on an effective Verlet-type algorithm, then the magnetic relaxation time used in the specific loss power (SLP) relation, obtained based on the theory of magnetic fluid losses from Rosensweig.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2020.167451</doi><orcidid>https://orcid.org/0000-0001-7795-4396</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2021-02, Vol.519, p.167451, Article 167451
issn 0304-8853
1873-4766
language eng
recordid cdi_proquest_journals_2478823231
source ScienceDirect Freedom Collection 2022-2024
subjects Agglomeration
Algorithms
Biocompatibility
Blood vessels
Coating
Colloid
Colloids
Computer simulation
Fever
Hyperthermia
Langevin dynamics
Magnetic fluids
Magnetic hyperthermia
Magnetic induction
Magnetic relaxation
Mathematical models
Nanoparticles
Nanoparticles coating
Relaxation time
Specific loss power
title About the influence of the colloidal magnetic nanoparticles coating on the specific loss power in magnetic hyperthermia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20the%20influence%20of%20the%20colloidal%20magnetic%20nanoparticles%20coating%20on%20the%20specific%20loss%20power%20in%20magnetic%20hyperthermia&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Osaci,%20Mihaela&rft.date=2021-02-01&rft.volume=519&rft.spage=167451&rft.pages=167451-&rft.artnum=167451&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2020.167451&rft_dat=%3Cproquest_cross%3E2478823231%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-6d68f28913c215a5e25b1fd954c0db7d71ae89eedeb74913538cff75a72469e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478823231&rft_id=info:pmid/&rfr_iscdi=true