Loading…
Di-carboxylic acid cellulose nanofibril (DCA-CNF) as an additive in water-based drilling fluids (WBMs) applied to shale formations
This work proposes the application of di-carboxylic acid cellulose nanofibril (DCA-CNF) obtained through maleic acid hydrolysis as an additive in water-based drilling fluids (WBMs). Specifically, the use of DCA-CNF as a replacement of xanthan gum (XGD) in the WBM formulations was evaluated. The effe...
Saved in:
Published in: | Cellulose (London) 2021, Vol.28 (1), p.417-436 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work proposes the application of di-carboxylic acid cellulose nanofibril (DCA-CNF) obtained through maleic acid hydrolysis as an additive in water-based drilling fluids (WBMs). Specifically, the use of DCA-CNF as a replacement of xanthan gum (XGD) in the WBM formulations was evaluated. The effect of DCA-CNF on the main functional properties of WBMs and their performance was evaluated and compared with that corresponding to XGD. To this end, interactions between DCA-CNF and bentonite (BT), as well as between DCA-CNF and polyanionic cellulose (PAC), were studied using quartz crystal microbalance with dissipation monitoring (QCM-D) technique. The rheological analyses showed a shear-thinning behavior of WBMs containing XGD similar to WBMs with DCA-CNF, while filtration properties and thermal stability improved by the presence of DCA-CNF. Results obtained by QCM-D indicated higher interaction between PAC and DCA-CNFs when compared to BT and DCA-CNF. The Sisko model was implemented to simulate the relationship between viscosity and shear rate. WBM for Argentina shale containing the double concentration of DCA-CNF exhibited similar rheological properties to the base fluid.
Graphic abstract |
---|---|
ISSN: | 0969-0239 1572-882X |
DOI: | 10.1007/s10570-020-03502-1 |