Loading…
Weyl Fractional Integral of Multi-Index Mittag- Leffler Function and I-Function
In this paper we develop two new interesting theorems that establishes relationships connecting the Weyl fractional integral to the product of multi-index Mittag-Leffler function with /-function and H-function. Subsequently, certain very intriguing special cases are obtained from the main theorems.
Saved in:
Published in: | IAENG international journal of applied mathematics 2020-12, Vol.50 (4), p.1-5 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | 4 |
container_start_page | 1 |
container_title | IAENG international journal of applied mathematics |
container_volume | 50 |
creator | Gammeng, C Saha, U K Maity, S |
description | In this paper we develop two new interesting theorems that establishes relationships connecting the Weyl fractional integral to the product of multi-index Mittag-Leffler function with /-function and H-function. Subsequently, certain very intriguing special cases are obtained from the main theorems. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2479494759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479494759</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-e5642085c5eecbea812933af252ac7ec174cf710f735aa7563c81b4df9531ff73</originalsourceid><addsrcrecordid>eNo9jstqwzAUREVpoSHNPwi6FlgvS1qGULcGh2wCWQZZvgoOQk4lGdq_r-lrNWcGZpg7tKLGMGKMru__WelHtMl57CshFNdashU6nOAz4CZZV8Yp2oDbWOCSFpg83s-hjKSNA3zg_ViKvRDcgfcBEm7m-F3BNg64JX_2CT14GzJsfnWNjs3LcfdGusNru9t25GZ0ISBrwSotnQRwPVhNmeHceiaZdQocVcJ5RSuvuLRWyZo7TXsxeCM59Uu6Rs8_s7c0vc-Qy_k6zWn5n89MKCOMUNLwLxiUS-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479494759</pqid></control><display><type>article</type><title>Weyl Fractional Integral of Multi-Index Mittag- Leffler Function and I-Function</title><source>Publicly Available Content Database</source><creator>Gammeng, C ; Saha, U K ; Maity, S</creator><creatorcontrib>Gammeng, C ; Saha, U K ; Maity, S</creatorcontrib><description>In this paper we develop two new interesting theorems that establishes relationships connecting the Weyl fractional integral to the product of multi-index Mittag-Leffler function with /-function and H-function. Subsequently, certain very intriguing special cases are obtained from the main theorems.</description><identifier>ISSN: 1992-9978</identifier><identifier>EISSN: 1992-9986</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Integrals ; Theorems</subject><ispartof>IAENG international journal of applied mathematics, 2020-12, Vol.50 (4), p.1-5</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the“License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2479494759/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2479494759?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Gammeng, C</creatorcontrib><creatorcontrib>Saha, U K</creatorcontrib><creatorcontrib>Maity, S</creatorcontrib><title>Weyl Fractional Integral of Multi-Index Mittag- Leffler Function and I-Function</title><title>IAENG international journal of applied mathematics</title><description>In this paper we develop two new interesting theorems that establishes relationships connecting the Weyl fractional integral to the product of multi-index Mittag-Leffler function with /-function and H-function. Subsequently, certain very intriguing special cases are obtained from the main theorems.</description><subject>Integrals</subject><subject>Theorems</subject><issn>1992-9978</issn><issn>1992-9986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9jstqwzAUREVpoSHNPwi6FlgvS1qGULcGh2wCWQZZvgoOQk4lGdq_r-lrNWcGZpg7tKLGMGKMru__WelHtMl57CshFNdashU6nOAz4CZZV8Yp2oDbWOCSFpg83s-hjKSNA3zg_ViKvRDcgfcBEm7m-F3BNg64JX_2CT14GzJsfnWNjs3LcfdGusNru9t25GZ0ISBrwSotnQRwPVhNmeHceiaZdQocVcJ5RSuvuLRWyZo7TXsxeCM59Uu6Rs8_s7c0vc-Qy_k6zWn5n89MKCOMUNLwLxiUS-I</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Gammeng, C</creator><creator>Saha, U K</creator><creator>Maity, S</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20201201</creationdate><title>Weyl Fractional Integral of Multi-Index Mittag- Leffler Function and I-Function</title><author>Gammeng, C ; Saha, U K ; Maity, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-e5642085c5eecbea812933af252ac7ec174cf710f735aa7563c81b4df9531ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Integrals</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gammeng, C</creatorcontrib><creatorcontrib>Saha, U K</creatorcontrib><creatorcontrib>Maity, S</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>test</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>IAENG international journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gammeng, C</au><au>Saha, U K</au><au>Maity, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weyl Fractional Integral of Multi-Index Mittag- Leffler Function and I-Function</atitle><jtitle>IAENG international journal of applied mathematics</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>50</volume><issue>4</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1992-9978</issn><eissn>1992-9986</eissn><abstract>In this paper we develop two new interesting theorems that establishes relationships connecting the Weyl fractional integral to the product of multi-index Mittag-Leffler function with /-function and H-function. Subsequently, certain very intriguing special cases are obtained from the main theorems.</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1992-9978 |
ispartof | IAENG international journal of applied mathematics, 2020-12, Vol.50 (4), p.1-5 |
issn | 1992-9978 1992-9986 |
language | eng |
recordid | cdi_proquest_journals_2479494759 |
source | Publicly Available Content Database |
subjects | Integrals Theorems |
title | Weyl Fractional Integral of Multi-Index Mittag- Leffler Function and I-Function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weyl%20Fractional%20Integral%20of%20Multi-Index%20Mittag-%20Leffler%20Function%20and%20I-Function&rft.jtitle=IAENG%20international%20journal%20of%20applied%20mathematics&rft.au=Gammeng,%20C&rft.date=2020-12-01&rft.volume=50&rft.issue=4&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1992-9978&rft.eissn=1992-9986&rft_id=info:doi/&rft_dat=%3Cproquest%3E2479494759%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p98t-e5642085c5eecbea812933af252ac7ec174cf710f735aa7563c81b4df9531ff73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2479494759&rft_id=info:pmid/&rfr_iscdi=true |