Loading…

The impact of monocity and hybridity of nanostructures on the thermal performance of Maxwellian thin-film flow with memory and Darcy–Forchheirmer effects

This article considers viscoelastic effects on the enhancement of transportation of heat in thin-film flow when the relaxation time phenomenon is considered to be significant. Transport models characterizing momentum and thermal memory effects are solved numerically. Finite element simulations are c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2021, Vol.143 (2), p.1261-1272
Main Author: Sadiq, Muhammad A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-3391156a08f4b8c06b1f5f61a55ec8891c42a6af623a828053321ad86e5a8c83
cites cdi_FETCH-LOGICAL-c429t-3391156a08f4b8c06b1f5f61a55ec8891c42a6af623a828053321ad86e5a8c83
container_end_page 1272
container_issue 2
container_start_page 1261
container_title Journal of thermal analysis and calorimetry
container_volume 143
creator Sadiq, Muhammad A.
description This article considers viscoelastic effects on the enhancement of transportation of heat in thin-film flow when the relaxation time phenomenon is considered to be significant. Transport models characterizing momentum and thermal memory effects are solved numerically. Finite element simulations are carried out for the prediction about viscoelasticity, relaxation time memory effects and drag by nonlinear porous medium and suspension of hybrid nanostructures in the Maxwellian fluid. The predictions are recorded in the form of graphical and numerical data which are interpreted to extract significant outcomes. A notable contrast in the behavior of thermal relaxation time and suspension of nanostructures is observed. This consequence is a blessing that thermal and momentum boundary layer thicknesses may be rheostated via relaxation times. On the other hand, a substantial rise in the thermal conductivity of Maxwellian working fluid in a thin-film region is observed due to the suspension of hybrid nanoparticles. Further, it is observed that improvement in thermal efficiency of the Maxwellian thin-film flow via hybrid nanoparticles is higher than the improvement in thermal efficiency of the Maxwellian thin-film flow via mono nanoparticles. The existence of a porous medium in the thin-film flow region offers a notable drag to flow. Subsequently, the porous medium is noted as a momentum controlling factor in the thin-film flow of Maxwell fluid. The heat generation process in hybrid nanofluid is faster that the heat generation in mono nanofluid.
doi_str_mv 10.1007/s10973-020-09761-1
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2479803941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650883050</galeid><sourcerecordid>A650883050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-3391156a08f4b8c06b1f5f61a55ec8891c42a6af623a828053321ad86e5a8c83</originalsourceid><addsrcrecordid>eNp9kcGOFCEQhjtGE9fVF_BE4slDr9AMDH3crK5ussZE505qmGKaTQMj0Jmd276DR9_OJ5G2TcxeDCH8hO-vKvI3zWtGLxil63eZ0X7NW9rRtgrJWvakOWNCqbbrO_m0al61ZII-b17kfEcp7XvKzpqfmwGJ8wcwhURLfAzRuHIiEHZkOG2T2823-hIgxFzSZMqUMJMYSKnOupOHkRww2VhVMDjDn-H-iOPoYKZcaK0bPbFjPJKjKwPx6GNaeryHZE6_Hn5cx2SGAV3ymAhai6bkl80zC2PGV3_P82Zz_WFz9am9_fLx5urytjWrri8t5z1jQgJVdrVVhsots8JKBkKgUapnFQMJVnYcVKeo4LxjsFMSBSij-HnzZil7SPH7hLnouzilUDvqbrXuFeX9ilXqYqH2MKJ2wcaSwNS1Q-9MDFj_iPpSCqoUp4JWw9tHhsoUvC97mHLWN9--Pma7hTUp5pzQ6kNyHtJJM6rngPUSsK4B6z8B63kivphyhcMe07-5_-P6DZ8eqyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479803941</pqid></control><display><type>article</type><title>The impact of monocity and hybridity of nanostructures on the thermal performance of Maxwellian thin-film flow with memory and Darcy–Forchheirmer effects</title><source>Springer Nature</source><creator>Sadiq, Muhammad A.</creator><creatorcontrib>Sadiq, Muhammad A.</creatorcontrib><description>This article considers viscoelastic effects on the enhancement of transportation of heat in thin-film flow when the relaxation time phenomenon is considered to be significant. Transport models characterizing momentum and thermal memory effects are solved numerically. Finite element simulations are carried out for the prediction about viscoelasticity, relaxation time memory effects and drag by nonlinear porous medium and suspension of hybrid nanostructures in the Maxwellian fluid. The predictions are recorded in the form of graphical and numerical data which are interpreted to extract significant outcomes. A notable contrast in the behavior of thermal relaxation time and suspension of nanostructures is observed. This consequence is a blessing that thermal and momentum boundary layer thicknesses may be rheostated via relaxation times. On the other hand, a substantial rise in the thermal conductivity of Maxwellian working fluid in a thin-film region is observed due to the suspension of hybrid nanoparticles. Further, it is observed that improvement in thermal efficiency of the Maxwellian thin-film flow via hybrid nanoparticles is higher than the improvement in thermal efficiency of the Maxwellian thin-film flow via mono nanoparticles. The existence of a porous medium in the thin-film flow region offers a notable drag to flow. Subsequently, the porous medium is noted as a momentum controlling factor in the thin-film flow of Maxwell fluid. The heat generation process in hybrid nanofluid is faster that the heat generation in mono nanofluid.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-020-09761-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Drag ; Heat generation ; Inorganic Chemistry ; Maxwell fluids ; Measurement Science and Instrumentation ; Momentum ; Nanofluids ; Nanoparticles ; Nanostructure ; Physical Chemistry ; Polymer Sciences ; Porous media ; Relaxation time ; Thermal boundary layer ; Thermal conductivity ; Thermal relaxation ; Thermodynamic efficiency ; Thickness ; Thin films ; Transportation models ; Viscoelasticity ; Working fluids</subject><ispartof>Journal of thermal analysis and calorimetry, 2021, Vol.143 (2), p.1261-1272</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-3391156a08f4b8c06b1f5f61a55ec8891c42a6af623a828053321ad86e5a8c83</citedby><cites>FETCH-LOGICAL-c429t-3391156a08f4b8c06b1f5f61a55ec8891c42a6af623a828053321ad86e5a8c83</cites><orcidid>0000-0002-4965-2259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sadiq, Muhammad A.</creatorcontrib><title>The impact of monocity and hybridity of nanostructures on the thermal performance of Maxwellian thin-film flow with memory and Darcy–Forchheirmer effects</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>This article considers viscoelastic effects on the enhancement of transportation of heat in thin-film flow when the relaxation time phenomenon is considered to be significant. Transport models characterizing momentum and thermal memory effects are solved numerically. Finite element simulations are carried out for the prediction about viscoelasticity, relaxation time memory effects and drag by nonlinear porous medium and suspension of hybrid nanostructures in the Maxwellian fluid. The predictions are recorded in the form of graphical and numerical data which are interpreted to extract significant outcomes. A notable contrast in the behavior of thermal relaxation time and suspension of nanostructures is observed. This consequence is a blessing that thermal and momentum boundary layer thicknesses may be rheostated via relaxation times. On the other hand, a substantial rise in the thermal conductivity of Maxwellian working fluid in a thin-film region is observed due to the suspension of hybrid nanoparticles. Further, it is observed that improvement in thermal efficiency of the Maxwellian thin-film flow via hybrid nanoparticles is higher than the improvement in thermal efficiency of the Maxwellian thin-film flow via mono nanoparticles. The existence of a porous medium in the thin-film flow region offers a notable drag to flow. Subsequently, the porous medium is noted as a momentum controlling factor in the thin-film flow of Maxwell fluid. The heat generation process in hybrid nanofluid is faster that the heat generation in mono nanofluid.</description><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Drag</subject><subject>Heat generation</subject><subject>Inorganic Chemistry</subject><subject>Maxwell fluids</subject><subject>Measurement Science and Instrumentation</subject><subject>Momentum</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Porous media</subject><subject>Relaxation time</subject><subject>Thermal boundary layer</subject><subject>Thermal conductivity</subject><subject>Thermal relaxation</subject><subject>Thermodynamic efficiency</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Transportation models</subject><subject>Viscoelasticity</subject><subject>Working fluids</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kcGOFCEQhjtGE9fVF_BE4slDr9AMDH3crK5ussZE505qmGKaTQMj0Jmd276DR9_OJ5G2TcxeDCH8hO-vKvI3zWtGLxil63eZ0X7NW9rRtgrJWvakOWNCqbbrO_m0al61ZII-b17kfEcp7XvKzpqfmwGJ8wcwhURLfAzRuHIiEHZkOG2T2823-hIgxFzSZMqUMJMYSKnOupOHkRww2VhVMDjDn-H-iOPoYKZcaK0bPbFjPJKjKwPx6GNaeryHZE6_Hn5cx2SGAV3ymAhai6bkl80zC2PGV3_P82Zz_WFz9am9_fLx5urytjWrri8t5z1jQgJVdrVVhsots8JKBkKgUapnFQMJVnYcVKeo4LxjsFMSBSij-HnzZil7SPH7hLnouzilUDvqbrXuFeX9ilXqYqH2MKJ2wcaSwNS1Q-9MDFj_iPpSCqoUp4JWw9tHhsoUvC97mHLWN9--Pma7hTUp5pzQ6kNyHtJJM6rngPUSsK4B6z8B63kivphyhcMe07-5_-P6DZ8eqyA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sadiq, Muhammad A.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-4965-2259</orcidid></search><sort><creationdate>2021</creationdate><title>The impact of monocity and hybridity of nanostructures on the thermal performance of Maxwellian thin-film flow with memory and Darcy–Forchheirmer effects</title><author>Sadiq, Muhammad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-3391156a08f4b8c06b1f5f61a55ec8891c42a6af623a828053321ad86e5a8c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Drag</topic><topic>Heat generation</topic><topic>Inorganic Chemistry</topic><topic>Maxwell fluids</topic><topic>Measurement Science and Instrumentation</topic><topic>Momentum</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Porous media</topic><topic>Relaxation time</topic><topic>Thermal boundary layer</topic><topic>Thermal conductivity</topic><topic>Thermal relaxation</topic><topic>Thermodynamic efficiency</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Transportation models</topic><topic>Viscoelasticity</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadiq, Muhammad A.</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadiq, Muhammad A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of monocity and hybridity of nanostructures on the thermal performance of Maxwellian thin-film flow with memory and Darcy–Forchheirmer effects</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2021</date><risdate>2021</risdate><volume>143</volume><issue>2</issue><spage>1261</spage><epage>1272</epage><pages>1261-1272</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>This article considers viscoelastic effects on the enhancement of transportation of heat in thin-film flow when the relaxation time phenomenon is considered to be significant. Transport models characterizing momentum and thermal memory effects are solved numerically. Finite element simulations are carried out for the prediction about viscoelasticity, relaxation time memory effects and drag by nonlinear porous medium and suspension of hybrid nanostructures in the Maxwellian fluid. The predictions are recorded in the form of graphical and numerical data which are interpreted to extract significant outcomes. A notable contrast in the behavior of thermal relaxation time and suspension of nanostructures is observed. This consequence is a blessing that thermal and momentum boundary layer thicknesses may be rheostated via relaxation times. On the other hand, a substantial rise in the thermal conductivity of Maxwellian working fluid in a thin-film region is observed due to the suspension of hybrid nanoparticles. Further, it is observed that improvement in thermal efficiency of the Maxwellian thin-film flow via hybrid nanoparticles is higher than the improvement in thermal efficiency of the Maxwellian thin-film flow via mono nanoparticles. The existence of a porous medium in the thin-film flow region offers a notable drag to flow. Subsequently, the porous medium is noted as a momentum controlling factor in the thin-film flow of Maxwell fluid. The heat generation process in hybrid nanofluid is faster that the heat generation in mono nanofluid.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-020-09761-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4965-2259</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2021, Vol.143 (2), p.1261-1272
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2479803941
source Springer Nature
subjects Analytical Chemistry
Chemistry
Chemistry and Materials Science
Drag
Heat generation
Inorganic Chemistry
Maxwell fluids
Measurement Science and Instrumentation
Momentum
Nanofluids
Nanoparticles
Nanostructure
Physical Chemistry
Polymer Sciences
Porous media
Relaxation time
Thermal boundary layer
Thermal conductivity
Thermal relaxation
Thermodynamic efficiency
Thickness
Thin films
Transportation models
Viscoelasticity
Working fluids
title The impact of monocity and hybridity of nanostructures on the thermal performance of Maxwellian thin-film flow with memory and Darcy–Forchheirmer effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20monocity%20and%20hybridity%20of%20nanostructures%20on%20the%20thermal%20performance%20of%20Maxwellian%20thin-film%20flow%20with%20memory%20and%20Darcy%E2%80%93Forchheirmer%20effects&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Sadiq,%20Muhammad%20A.&rft.date=2021&rft.volume=143&rft.issue=2&rft.spage=1261&rft.epage=1272&rft.pages=1261-1272&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-020-09761-1&rft_dat=%3Cgale_proqu%3EA650883050%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-3391156a08f4b8c06b1f5f61a55ec8891c42a6af623a828053321ad86e5a8c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2479803941&rft_id=info:pmid/&rft_galeid=A650883050&rfr_iscdi=true