Loading…

Single Scanner BLS System for Forest Plot Mapping

The 3-D information collected from sample plots is significant for forest inventories. Terrestrial laser scanning (TLS) has been demonstrated to be an effective device in data acquisition of forest plots. Although TLS is able to achieve precise measurements, multiple scans are usually necessary to c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2021-02, Vol.59 (2), p.1675-1685
Main Authors: Shao, Jie, Zhang, Wuming, Mellado, Nicolas, Jin, Shuangna, Cai, Shangshu, Luo, Lei, Yang, Lingbo, Yan, Guangjian, Zhou, Guoqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The 3-D information collected from sample plots is significant for forest inventories. Terrestrial laser scanning (TLS) has been demonstrated to be an effective device in data acquisition of forest plots. Although TLS is able to achieve precise measurements, multiple scans are usually necessary to collect more detailed data, which generally requires more time in scan preparation and field data acquisition. In contrast, mobile laser scanning (MLS) is being increasingly utilized in mapping due to its mobility. However, the geometrical peculiarity of forests introduces challenges. In this article, a test backpack-based MLS system, i.e., backpack laser scanning (BLS), is designed for forest plot mapping without a global navigation satellite system/inertial measurement unit (GNSS-IMU) system. To achieve accurate matching, this article proposes to combine the line and point features for calculating transformation, in which the line feature is derived from trunk skeletons. Then, a scan-to-map matching strategy is proposed for correcting positional drift. Finally, this article evaluates the effectiveness and the mapping accuracy of the proposed method in forest sample plots. The experimental results indicate that the proposed method achieves accurate forest plot mapping using the BLS; meanwhile, compared to the existing methods, the proposed method utilizes the geometric attributes of the trees and reaches a lower mapping error, in which the mean errors and the root square mean errors for the horizontal/vertical direction in plots are less than 3 cm.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2020.2999413