Loading…

GRAthena++: puncture evolutions on vertex-centered oct-tree AMR

Numerical relativity is central to the investigation of astrophysical sources in the dynamical and strong-field gravity regime, such as binary black hole and neutron star coalescences. Current challenges set by gravitational-wave and multi-messenger astronomy call for highly performant and scalable...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-01
Main Authors: Daszuta, Boris, Zappa, Francesco, Cook, William, Radice, David, Bernuzzi, Sebastiano, Morozova, Viktoriya
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Daszuta, Boris
Zappa, Francesco
Cook, William
Radice, David
Bernuzzi, Sebastiano
Morozova, Viktoriya
description Numerical relativity is central to the investigation of astrophysical sources in the dynamical and strong-field gravity regime, such as binary black hole and neutron star coalescences. Current challenges set by gravitational-wave and multi-messenger astronomy call for highly performant and scalable codes on modern massively-parallel architectures. We present GR-Athena++, a general-relativistic, high-order, vertex-centered solver that extends the oct-tree, adaptive mesh refinement capabilities of the astrophysical (radiation) magnetohydrodynamics code Athena++. To simulate dynamical space-times GR-Athena++ uses the Z4c evolution scheme of numerical relativity coupled to the moving puncture gauge. We demonstrate stable and accurate binary black hole merger evolutions via extensive convergence testing, cross-code validation, and verification against state-of-the-art effective-one-body waveforms. GR-Athena++ leverages the task-based parallelism paradigm of Athena++ to achieve excellent scalability. We measure strong scaling efficiencies above \(95\%\) for up to \(\sim 1.2\times10^4\) CPUs and excellent weak scaling is shown up to \(\sim 10^5\) CPUs in a production binary black hole setup with adaptive mesh refinement. GR-Athena++ thus allows for the robust simulation of compact binary coalescences and offers a viable path towards numerical relativity at exascale.
doi_str_mv 10.48550/arxiv.2101.08289
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2479920524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479920524</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-4ceef98846cd01207b41fc18fcf1927f6b7d1896e478fe39be8140b4bf3025c23</originalsourceid><addsrcrecordid>eNotzUFLwzAYgOEgCI65H-At4HGkJl-SJvEiZegUJsLYfbTpF9wYyUzTsp_vQE_v7X0IeRC8UlZr_tTmy2GqQHBRcQvW3ZAZSCmYVQB3ZDEMR8451Aa0ljPyst425Rtju1w-0_MYfRkzUpzSaSyHFAeaIp0wF7wwj7Fgxp4mX1jJiLT53N6T29CeBlz8d052b6-71TvbfK0_Vs2GtRoUUx4xOGtV7XsugJtOieCFDT4IBybUnemFdTUqYwNK16EVineqC5KD9iDn5PFve87pZ8Sh7I9pzPEq7kEZ54BfGfkLpwRJqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479920524</pqid></control><display><type>article</type><title>GRAthena++: puncture evolutions on vertex-centered oct-tree AMR</title><source>Publicly Available Content Database</source><creator>Daszuta, Boris ; Zappa, Francesco ; Cook, William ; Radice, David ; Bernuzzi, Sebastiano ; Morozova, Viktoriya</creator><creatorcontrib>Daszuta, Boris ; Zappa, Francesco ; Cook, William ; Radice, David ; Bernuzzi, Sebastiano ; Morozova, Viktoriya</creatorcontrib><description>Numerical relativity is central to the investigation of astrophysical sources in the dynamical and strong-field gravity regime, such as binary black hole and neutron star coalescences. Current challenges set by gravitational-wave and multi-messenger astronomy call for highly performant and scalable codes on modern massively-parallel architectures. We present GR-Athena++, a general-relativistic, high-order, vertex-centered solver that extends the oct-tree, adaptive mesh refinement capabilities of the astrophysical (radiation) magnetohydrodynamics code Athena++. To simulate dynamical space-times GR-Athena++ uses the Z4c evolution scheme of numerical relativity coupled to the moving puncture gauge. We demonstrate stable and accurate binary black hole merger evolutions via extensive convergence testing, cross-code validation, and verification against state-of-the-art effective-one-body waveforms. GR-Athena++ leverages the task-based parallelism paradigm of Athena++ to achieve excellent scalability. We measure strong scaling efficiencies above \(95\%\) for up to \(\sim 1.2\times10^4\) CPUs and excellent weak scaling is shown up to \(\sim 10^5\) CPUs in a production binary black hole setup with adaptive mesh refinement. GR-Athena++ thus allows for the robust simulation of compact binary coalescences and offers a viable path towards numerical relativity at exascale.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2101.08289</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astronomy ; Binary stars ; Black holes ; Computational fluid dynamics ; Finite element method ; Gravitational waves ; Grid refinement (mathematics) ; Magnetohydrodynamics ; Neutron stars ; Numerical relativity ; Relativity ; Robustness (mathematics) ; Waveforms</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2479920524?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Daszuta, Boris</creatorcontrib><creatorcontrib>Zappa, Francesco</creatorcontrib><creatorcontrib>Cook, William</creatorcontrib><creatorcontrib>Radice, David</creatorcontrib><creatorcontrib>Bernuzzi, Sebastiano</creatorcontrib><creatorcontrib>Morozova, Viktoriya</creatorcontrib><title>GRAthena++: puncture evolutions on vertex-centered oct-tree AMR</title><title>arXiv.org</title><description>Numerical relativity is central to the investigation of astrophysical sources in the dynamical and strong-field gravity regime, such as binary black hole and neutron star coalescences. Current challenges set by gravitational-wave and multi-messenger astronomy call for highly performant and scalable codes on modern massively-parallel architectures. We present GR-Athena++, a general-relativistic, high-order, vertex-centered solver that extends the oct-tree, adaptive mesh refinement capabilities of the astrophysical (radiation) magnetohydrodynamics code Athena++. To simulate dynamical space-times GR-Athena++ uses the Z4c evolution scheme of numerical relativity coupled to the moving puncture gauge. We demonstrate stable and accurate binary black hole merger evolutions via extensive convergence testing, cross-code validation, and verification against state-of-the-art effective-one-body waveforms. GR-Athena++ leverages the task-based parallelism paradigm of Athena++ to achieve excellent scalability. We measure strong scaling efficiencies above \(95\%\) for up to \(\sim 1.2\times10^4\) CPUs and excellent weak scaling is shown up to \(\sim 10^5\) CPUs in a production binary black hole setup with adaptive mesh refinement. GR-Athena++ thus allows for the robust simulation of compact binary coalescences and offers a viable path towards numerical relativity at exascale.</description><subject>Astronomy</subject><subject>Binary stars</subject><subject>Black holes</subject><subject>Computational fluid dynamics</subject><subject>Finite element method</subject><subject>Gravitational waves</subject><subject>Grid refinement (mathematics)</subject><subject>Magnetohydrodynamics</subject><subject>Neutron stars</subject><subject>Numerical relativity</subject><subject>Relativity</subject><subject>Robustness (mathematics)</subject><subject>Waveforms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzUFLwzAYgOEgCI65H-At4HGkJl-SJvEiZegUJsLYfbTpF9wYyUzTsp_vQE_v7X0IeRC8UlZr_tTmy2GqQHBRcQvW3ZAZSCmYVQB3ZDEMR8451Aa0ljPyst425Rtju1w-0_MYfRkzUpzSaSyHFAeaIp0wF7wwj7Fgxp4mX1jJiLT53N6T29CeBlz8d052b6-71TvbfK0_Vs2GtRoUUx4xOGtV7XsugJtOieCFDT4IBybUnemFdTUqYwNK16EVineqC5KD9iDn5PFve87pZ8Sh7I9pzPEq7kEZ54BfGfkLpwRJqQ</recordid><startdate>20210120</startdate><enddate>20210120</enddate><creator>Daszuta, Boris</creator><creator>Zappa, Francesco</creator><creator>Cook, William</creator><creator>Radice, David</creator><creator>Bernuzzi, Sebastiano</creator><creator>Morozova, Viktoriya</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210120</creationdate><title>GRAthena++: puncture evolutions on vertex-centered oct-tree AMR</title><author>Daszuta, Boris ; Zappa, Francesco ; Cook, William ; Radice, David ; Bernuzzi, Sebastiano ; Morozova, Viktoriya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-4ceef98846cd01207b41fc18fcf1927f6b7d1896e478fe39be8140b4bf3025c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy</topic><topic>Binary stars</topic><topic>Black holes</topic><topic>Computational fluid dynamics</topic><topic>Finite element method</topic><topic>Gravitational waves</topic><topic>Grid refinement (mathematics)</topic><topic>Magnetohydrodynamics</topic><topic>Neutron stars</topic><topic>Numerical relativity</topic><topic>Relativity</topic><topic>Robustness (mathematics)</topic><topic>Waveforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Daszuta, Boris</creatorcontrib><creatorcontrib>Zappa, Francesco</creatorcontrib><creatorcontrib>Cook, William</creatorcontrib><creatorcontrib>Radice, David</creatorcontrib><creatorcontrib>Bernuzzi, Sebastiano</creatorcontrib><creatorcontrib>Morozova, Viktoriya</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daszuta, Boris</au><au>Zappa, Francesco</au><au>Cook, William</au><au>Radice, David</au><au>Bernuzzi, Sebastiano</au><au>Morozova, Viktoriya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRAthena++: puncture evolutions on vertex-centered oct-tree AMR</atitle><jtitle>arXiv.org</jtitle><date>2021-01-20</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Numerical relativity is central to the investigation of astrophysical sources in the dynamical and strong-field gravity regime, such as binary black hole and neutron star coalescences. Current challenges set by gravitational-wave and multi-messenger astronomy call for highly performant and scalable codes on modern massively-parallel architectures. We present GR-Athena++, a general-relativistic, high-order, vertex-centered solver that extends the oct-tree, adaptive mesh refinement capabilities of the astrophysical (radiation) magnetohydrodynamics code Athena++. To simulate dynamical space-times GR-Athena++ uses the Z4c evolution scheme of numerical relativity coupled to the moving puncture gauge. We demonstrate stable and accurate binary black hole merger evolutions via extensive convergence testing, cross-code validation, and verification against state-of-the-art effective-one-body waveforms. GR-Athena++ leverages the task-based parallelism paradigm of Athena++ to achieve excellent scalability. We measure strong scaling efficiencies above \(95\%\) for up to \(\sim 1.2\times10^4\) CPUs and excellent weak scaling is shown up to \(\sim 10^5\) CPUs in a production binary black hole setup with adaptive mesh refinement. GR-Athena++ thus allows for the robust simulation of compact binary coalescences and offers a viable path towards numerical relativity at exascale.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2101.08289</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2479920524
source Publicly Available Content Database
subjects Astronomy
Binary stars
Black holes
Computational fluid dynamics
Finite element method
Gravitational waves
Grid refinement (mathematics)
Magnetohydrodynamics
Neutron stars
Numerical relativity
Relativity
Robustness (mathematics)
Waveforms
title GRAthena++: puncture evolutions on vertex-centered oct-tree AMR
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRAthena++:%20puncture%20evolutions%20on%20vertex-centered%20oct-tree%20AMR&rft.jtitle=arXiv.org&rft.au=Daszuta,%20Boris&rft.date=2021-01-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2101.08289&rft_dat=%3Cproquest%3E2479920524%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-4ceef98846cd01207b41fc18fcf1927f6b7d1896e478fe39be8140b4bf3025c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2479920524&rft_id=info:pmid/&rfr_iscdi=true