Loading…
GRAthena++: puncture evolutions on vertex-centered oct-tree AMR
Numerical relativity is central to the investigation of astrophysical sources in the dynamical and strong-field gravity regime, such as binary black hole and neutron star coalescences. Current challenges set by gravitational-wave and multi-messenger astronomy call for highly performant and scalable...
Saved in:
Published in: | arXiv.org 2021-01 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Daszuta, Boris Zappa, Francesco Cook, William Radice, David Bernuzzi, Sebastiano Morozova, Viktoriya |
description | Numerical relativity is central to the investigation of astrophysical sources in the dynamical and strong-field gravity regime, such as binary black hole and neutron star coalescences. Current challenges set by gravitational-wave and multi-messenger astronomy call for highly performant and scalable codes on modern massively-parallel architectures. We present GR-Athena++, a general-relativistic, high-order, vertex-centered solver that extends the oct-tree, adaptive mesh refinement capabilities of the astrophysical (radiation) magnetohydrodynamics code Athena++. To simulate dynamical space-times GR-Athena++ uses the Z4c evolution scheme of numerical relativity coupled to the moving puncture gauge. We demonstrate stable and accurate binary black hole merger evolutions via extensive convergence testing, cross-code validation, and verification against state-of-the-art effective-one-body waveforms. GR-Athena++ leverages the task-based parallelism paradigm of Athena++ to achieve excellent scalability. We measure strong scaling efficiencies above \(95\%\) for up to \(\sim 1.2\times10^4\) CPUs and excellent weak scaling is shown up to \(\sim 10^5\) CPUs in a production binary black hole setup with adaptive mesh refinement. GR-Athena++ thus allows for the robust simulation of compact binary coalescences and offers a viable path towards numerical relativity at exascale. |
doi_str_mv | 10.48550/arxiv.2101.08289 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2479920524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479920524</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-4ceef98846cd01207b41fc18fcf1927f6b7d1896e478fe39be8140b4bf3025c23</originalsourceid><addsrcrecordid>eNotzUFLwzAYgOEgCI65H-At4HGkJl-SJvEiZegUJsLYfbTpF9wYyUzTsp_vQE_v7X0IeRC8UlZr_tTmy2GqQHBRcQvW3ZAZSCmYVQB3ZDEMR8451Aa0ljPyst425Rtju1w-0_MYfRkzUpzSaSyHFAeaIp0wF7wwj7Fgxp4mX1jJiLT53N6T29CeBlz8d052b6-71TvbfK0_Vs2GtRoUUx4xOGtV7XsugJtOieCFDT4IBybUnemFdTUqYwNK16EVineqC5KD9iDn5PFve87pZ8Sh7I9pzPEq7kEZ54BfGfkLpwRJqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479920524</pqid></control><display><type>article</type><title>GRAthena++: puncture evolutions on vertex-centered oct-tree AMR</title><source>Publicly Available Content Database</source><creator>Daszuta, Boris ; Zappa, Francesco ; Cook, William ; Radice, David ; Bernuzzi, Sebastiano ; Morozova, Viktoriya</creator><creatorcontrib>Daszuta, Boris ; Zappa, Francesco ; Cook, William ; Radice, David ; Bernuzzi, Sebastiano ; Morozova, Viktoriya</creatorcontrib><description>Numerical relativity is central to the investigation of astrophysical sources in the dynamical and strong-field gravity regime, such as binary black hole and neutron star coalescences. Current challenges set by gravitational-wave and multi-messenger astronomy call for highly performant and scalable codes on modern massively-parallel architectures. We present GR-Athena++, a general-relativistic, high-order, vertex-centered solver that extends the oct-tree, adaptive mesh refinement capabilities of the astrophysical (radiation) magnetohydrodynamics code Athena++. To simulate dynamical space-times GR-Athena++ uses the Z4c evolution scheme of numerical relativity coupled to the moving puncture gauge. We demonstrate stable and accurate binary black hole merger evolutions via extensive convergence testing, cross-code validation, and verification against state-of-the-art effective-one-body waveforms. GR-Athena++ leverages the task-based parallelism paradigm of Athena++ to achieve excellent scalability. We measure strong scaling efficiencies above \(95\%\) for up to \(\sim 1.2\times10^4\) CPUs and excellent weak scaling is shown up to \(\sim 10^5\) CPUs in a production binary black hole setup with adaptive mesh refinement. GR-Athena++ thus allows for the robust simulation of compact binary coalescences and offers a viable path towards numerical relativity at exascale.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2101.08289</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astronomy ; Binary stars ; Black holes ; Computational fluid dynamics ; Finite element method ; Gravitational waves ; Grid refinement (mathematics) ; Magnetohydrodynamics ; Neutron stars ; Numerical relativity ; Relativity ; Robustness (mathematics) ; Waveforms</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2479920524?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Daszuta, Boris</creatorcontrib><creatorcontrib>Zappa, Francesco</creatorcontrib><creatorcontrib>Cook, William</creatorcontrib><creatorcontrib>Radice, David</creatorcontrib><creatorcontrib>Bernuzzi, Sebastiano</creatorcontrib><creatorcontrib>Morozova, Viktoriya</creatorcontrib><title>GRAthena++: puncture evolutions on vertex-centered oct-tree AMR</title><title>arXiv.org</title><description>Numerical relativity is central to the investigation of astrophysical sources in the dynamical and strong-field gravity regime, such as binary black hole and neutron star coalescences. Current challenges set by gravitational-wave and multi-messenger astronomy call for highly performant and scalable codes on modern massively-parallel architectures. We present GR-Athena++, a general-relativistic, high-order, vertex-centered solver that extends the oct-tree, adaptive mesh refinement capabilities of the astrophysical (radiation) magnetohydrodynamics code Athena++. To simulate dynamical space-times GR-Athena++ uses the Z4c evolution scheme of numerical relativity coupled to the moving puncture gauge. We demonstrate stable and accurate binary black hole merger evolutions via extensive convergence testing, cross-code validation, and verification against state-of-the-art effective-one-body waveforms. GR-Athena++ leverages the task-based parallelism paradigm of Athena++ to achieve excellent scalability. We measure strong scaling efficiencies above \(95\%\) for up to \(\sim 1.2\times10^4\) CPUs and excellent weak scaling is shown up to \(\sim 10^5\) CPUs in a production binary black hole setup with adaptive mesh refinement. GR-Athena++ thus allows for the robust simulation of compact binary coalescences and offers a viable path towards numerical relativity at exascale.</description><subject>Astronomy</subject><subject>Binary stars</subject><subject>Black holes</subject><subject>Computational fluid dynamics</subject><subject>Finite element method</subject><subject>Gravitational waves</subject><subject>Grid refinement (mathematics)</subject><subject>Magnetohydrodynamics</subject><subject>Neutron stars</subject><subject>Numerical relativity</subject><subject>Relativity</subject><subject>Robustness (mathematics)</subject><subject>Waveforms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzUFLwzAYgOEgCI65H-At4HGkJl-SJvEiZegUJsLYfbTpF9wYyUzTsp_vQE_v7X0IeRC8UlZr_tTmy2GqQHBRcQvW3ZAZSCmYVQB3ZDEMR8451Aa0ljPyst425Rtju1w-0_MYfRkzUpzSaSyHFAeaIp0wF7wwj7Fgxp4mX1jJiLT53N6T29CeBlz8d052b6-71TvbfK0_Vs2GtRoUUx4xOGtV7XsugJtOieCFDT4IBybUnemFdTUqYwNK16EVineqC5KD9iDn5PFve87pZ8Sh7I9pzPEq7kEZ54BfGfkLpwRJqQ</recordid><startdate>20210120</startdate><enddate>20210120</enddate><creator>Daszuta, Boris</creator><creator>Zappa, Francesco</creator><creator>Cook, William</creator><creator>Radice, David</creator><creator>Bernuzzi, Sebastiano</creator><creator>Morozova, Viktoriya</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210120</creationdate><title>GRAthena++: puncture evolutions on vertex-centered oct-tree AMR</title><author>Daszuta, Boris ; Zappa, Francesco ; Cook, William ; Radice, David ; Bernuzzi, Sebastiano ; Morozova, Viktoriya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-4ceef98846cd01207b41fc18fcf1927f6b7d1896e478fe39be8140b4bf3025c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy</topic><topic>Binary stars</topic><topic>Black holes</topic><topic>Computational fluid dynamics</topic><topic>Finite element method</topic><topic>Gravitational waves</topic><topic>Grid refinement (mathematics)</topic><topic>Magnetohydrodynamics</topic><topic>Neutron stars</topic><topic>Numerical relativity</topic><topic>Relativity</topic><topic>Robustness (mathematics)</topic><topic>Waveforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Daszuta, Boris</creatorcontrib><creatorcontrib>Zappa, Francesco</creatorcontrib><creatorcontrib>Cook, William</creatorcontrib><creatorcontrib>Radice, David</creatorcontrib><creatorcontrib>Bernuzzi, Sebastiano</creatorcontrib><creatorcontrib>Morozova, Viktoriya</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daszuta, Boris</au><au>Zappa, Francesco</au><au>Cook, William</au><au>Radice, David</au><au>Bernuzzi, Sebastiano</au><au>Morozova, Viktoriya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRAthena++: puncture evolutions on vertex-centered oct-tree AMR</atitle><jtitle>arXiv.org</jtitle><date>2021-01-20</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Numerical relativity is central to the investigation of astrophysical sources in the dynamical and strong-field gravity regime, such as binary black hole and neutron star coalescences. Current challenges set by gravitational-wave and multi-messenger astronomy call for highly performant and scalable codes on modern massively-parallel architectures. We present GR-Athena++, a general-relativistic, high-order, vertex-centered solver that extends the oct-tree, adaptive mesh refinement capabilities of the astrophysical (radiation) magnetohydrodynamics code Athena++. To simulate dynamical space-times GR-Athena++ uses the Z4c evolution scheme of numerical relativity coupled to the moving puncture gauge. We demonstrate stable and accurate binary black hole merger evolutions via extensive convergence testing, cross-code validation, and verification against state-of-the-art effective-one-body waveforms. GR-Athena++ leverages the task-based parallelism paradigm of Athena++ to achieve excellent scalability. We measure strong scaling efficiencies above \(95\%\) for up to \(\sim 1.2\times10^4\) CPUs and excellent weak scaling is shown up to \(\sim 10^5\) CPUs in a production binary black hole setup with adaptive mesh refinement. GR-Athena++ thus allows for the robust simulation of compact binary coalescences and offers a viable path towards numerical relativity at exascale.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2101.08289</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2479920524 |
source | Publicly Available Content Database |
subjects | Astronomy Binary stars Black holes Computational fluid dynamics Finite element method Gravitational waves Grid refinement (mathematics) Magnetohydrodynamics Neutron stars Numerical relativity Relativity Robustness (mathematics) Waveforms |
title | GRAthena++: puncture evolutions on vertex-centered oct-tree AMR |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRAthena++:%20puncture%20evolutions%20on%20vertex-centered%20oct-tree%20AMR&rft.jtitle=arXiv.org&rft.au=Daszuta,%20Boris&rft.date=2021-01-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2101.08289&rft_dat=%3Cproquest%3E2479920524%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-4ceef98846cd01207b41fc18fcf1927f6b7d1896e478fe39be8140b4bf3025c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2479920524&rft_id=info:pmid/&rfr_iscdi=true |