Loading…
A new implicit high-order six-step singularly P-stable method for the numerical solution of Schrödinger equation
In this paper, we present a new implicit six-step singularly P-stable method with vanished phase-lag and its derivatives up to fifth order for the numerical integration of the one-dimensional radial time independent Schrödinger equation. The periodicity region of the method is plotted and the numeri...
Saved in:
Published in: | Journal of mathematical chemistry 2021, Vol.59 (1), p.224-249 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-5159d2dbe29473f9117e0191675167069b767a96d469b58e31e176f89b71d3043 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-5159d2dbe29473f9117e0191675167069b767a96d469b58e31e176f89b71d3043 |
container_end_page | 249 |
container_issue | 1 |
container_start_page | 224 |
container_title | Journal of mathematical chemistry |
container_volume | 59 |
creator | Shokri, Ali Mehdizadeh Khalsaraei, Mohammad |
description | In this paper, we present a new implicit six-step singularly P-stable method with vanished phase-lag and its derivatives up to fifth order for the numerical integration of the one-dimensional radial time independent Schrödinger equation. The periodicity region of the method is plotted and the numerical stability and phase properties of the new methods are analyzed. The advantage of the new method in comparison with similar methods—in terms of efficiency, accuracy and stability—have been shown by implementing them in the radial time-independent Schrödinger equation during the resonance problems with the use of the Woods–Saxon potential. |
doi_str_mv | 10.1007/s10910-020-01189-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479999756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479999756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5159d2dbe29473f9117e0191675167069b767a96d469b58e31e176f89b71d3043</originalsourceid><addsrcrecordid>eNp9UNtKxDAQDaLguvoDPgV8js70luRxWbzBgoL6HLptus3SNt2kRffH_AF_zKwVfHNgmGHmnDPMIeQS4RoB-I1HkAgMopCIQjI4IjNMecSEkPyYzCBKJZNc4ik5834LAFJkYkZ2C9rpd2ravjGFGWhtNjWzrtSOevPB_KD70HSbsclds6fPYZKvG01bPdS2pJV1dKg17cZWO1PkDfW2GQdjO2or-lLU7uuzDPQgp3djflick5Mqb7y--K1z8nZ3-7p8YKun-8flYsWKGOXAUkxlGZVrHcmEx5VE5BpQYsbTkJDJNc94LrMyCW0qdIwaeVaJMMcyhiSek6tJt3d2N2o_qK0dXRdOqijhMgRPs4CKJlThrPdOV6p3ps3dXiGog7VqslYFa9WPtQoCKZ5IPoAPz_1J_8P6Bjx4fK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479999756</pqid></control><display><type>article</type><title>A new implicit high-order six-step singularly P-stable method for the numerical solution of Schrödinger equation</title><source>Springer Nature</source><creator>Shokri, Ali ; Mehdizadeh Khalsaraei, Mohammad</creator><creatorcontrib>Shokri, Ali ; Mehdizadeh Khalsaraei, Mohammad</creatorcontrib><description>In this paper, we present a new implicit six-step singularly P-stable method with vanished phase-lag and its derivatives up to fifth order for the numerical integration of the one-dimensional radial time independent Schrödinger equation. The periodicity region of the method is plotted and the numerical stability and phase properties of the new methods are analyzed. The advantage of the new method in comparison with similar methods—in terms of efficiency, accuracy and stability—have been shown by implementing them in the radial time-independent Schrödinger equation during the resonance problems with the use of the Woods–Saxon potential.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-020-01189-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Math. Applications in Chemistry ; Numerical integration ; Numerical stability ; Original Paper ; Phase lag ; Physical Chemistry ; Schrodinger equation ; Stability analysis ; Theoretical and Computational Chemistry</subject><ispartof>Journal of mathematical chemistry, 2021, Vol.59 (1), p.224-249</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5159d2dbe29473f9117e0191675167069b767a96d469b58e31e176f89b71d3043</citedby><cites>FETCH-LOGICAL-c319t-5159d2dbe29473f9117e0191675167069b767a96d469b58e31e176f89b71d3043</cites><orcidid>0000-0003-2699-1490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shokri, Ali</creatorcontrib><creatorcontrib>Mehdizadeh Khalsaraei, Mohammad</creatorcontrib><title>A new implicit high-order six-step singularly P-stable method for the numerical solution of Schrödinger equation</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>In this paper, we present a new implicit six-step singularly P-stable method with vanished phase-lag and its derivatives up to fifth order for the numerical integration of the one-dimensional radial time independent Schrödinger equation. The periodicity region of the method is plotted and the numerical stability and phase properties of the new methods are analyzed. The advantage of the new method in comparison with similar methods—in terms of efficiency, accuracy and stability—have been shown by implementing them in the radial time-independent Schrödinger equation during the resonance problems with the use of the Woods–Saxon potential.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Math. Applications in Chemistry</subject><subject>Numerical integration</subject><subject>Numerical stability</subject><subject>Original Paper</subject><subject>Phase lag</subject><subject>Physical Chemistry</subject><subject>Schrodinger equation</subject><subject>Stability analysis</subject><subject>Theoretical and Computational Chemistry</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKxDAQDaLguvoDPgV8js70luRxWbzBgoL6HLptus3SNt2kRffH_AF_zKwVfHNgmGHmnDPMIeQS4RoB-I1HkAgMopCIQjI4IjNMecSEkPyYzCBKJZNc4ik5834LAFJkYkZ2C9rpd2ravjGFGWhtNjWzrtSOevPB_KD70HSbsclds6fPYZKvG01bPdS2pJV1dKg17cZWO1PkDfW2GQdjO2or-lLU7uuzDPQgp3djflick5Mqb7y--K1z8nZ3-7p8YKun-8flYsWKGOXAUkxlGZVrHcmEx5VE5BpQYsbTkJDJNc94LrMyCW0qdIwaeVaJMMcyhiSek6tJt3d2N2o_qK0dXRdOqijhMgRPs4CKJlThrPdOV6p3ps3dXiGog7VqslYFa9WPtQoCKZ5IPoAPz_1J_8P6Bjx4fK0</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Shokri, Ali</creator><creator>Mehdizadeh Khalsaraei, Mohammad</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2699-1490</orcidid></search><sort><creationdate>2021</creationdate><title>A new implicit high-order six-step singularly P-stable method for the numerical solution of Schrödinger equation</title><author>Shokri, Ali ; Mehdizadeh Khalsaraei, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5159d2dbe29473f9117e0191675167069b767a96d469b58e31e176f89b71d3043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Math. Applications in Chemistry</topic><topic>Numerical integration</topic><topic>Numerical stability</topic><topic>Original Paper</topic><topic>Phase lag</topic><topic>Physical Chemistry</topic><topic>Schrodinger equation</topic><topic>Stability analysis</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shokri, Ali</creatorcontrib><creatorcontrib>Mehdizadeh Khalsaraei, Mohammad</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shokri, Ali</au><au>Mehdizadeh Khalsaraei, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new implicit high-order six-step singularly P-stable method for the numerical solution of Schrödinger equation</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2021</date><risdate>2021</risdate><volume>59</volume><issue>1</issue><spage>224</spage><epage>249</epage><pages>224-249</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>In this paper, we present a new implicit six-step singularly P-stable method with vanished phase-lag and its derivatives up to fifth order for the numerical integration of the one-dimensional radial time independent Schrödinger equation. The periodicity region of the method is plotted and the numerical stability and phase properties of the new methods are analyzed. The advantage of the new method in comparison with similar methods—in terms of efficiency, accuracy and stability—have been shown by implementing them in the radial time-independent Schrödinger equation during the resonance problems with the use of the Woods–Saxon potential.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-020-01189-0</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2699-1490</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0259-9791 |
ispartof | Journal of mathematical chemistry, 2021, Vol.59 (1), p.224-249 |
issn | 0259-9791 1572-8897 |
language | eng |
recordid | cdi_proquest_journals_2479999756 |
source | Springer Nature |
subjects | Chemistry Chemistry and Materials Science Math. Applications in Chemistry Numerical integration Numerical stability Original Paper Phase lag Physical Chemistry Schrodinger equation Stability analysis Theoretical and Computational Chemistry |
title | A new implicit high-order six-step singularly P-stable method for the numerical solution of Schrödinger equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20implicit%20high-order%20six-step%20singularly%20P-stable%20method%20for%20the%20numerical%20solution%20of%20Schr%C3%B6dinger%20equation&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Shokri,%20Ali&rft.date=2021&rft.volume=59&rft.issue=1&rft.spage=224&rft.epage=249&rft.pages=224-249&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-020-01189-0&rft_dat=%3Cproquest_cross%3E2479999756%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-5159d2dbe29473f9117e0191675167069b767a96d469b58e31e176f89b71d3043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2479999756&rft_id=info:pmid/&rfr_iscdi=true |