Loading…

A new implicit high-order six-step singularly P-stable method for the numerical solution of Schrödinger equation

In this paper, we present a new implicit six-step singularly P-stable method with vanished phase-lag and its derivatives up to fifth order for the numerical integration of the one-dimensional radial time independent Schrödinger equation. The periodicity region of the method is plotted and the numeri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical chemistry 2021, Vol.59 (1), p.224-249
Main Authors: Shokri, Ali, Mehdizadeh Khalsaraei, Mohammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-5159d2dbe29473f9117e0191675167069b767a96d469b58e31e176f89b71d3043
cites cdi_FETCH-LOGICAL-c319t-5159d2dbe29473f9117e0191675167069b767a96d469b58e31e176f89b71d3043
container_end_page 249
container_issue 1
container_start_page 224
container_title Journal of mathematical chemistry
container_volume 59
creator Shokri, Ali
Mehdizadeh Khalsaraei, Mohammad
description In this paper, we present a new implicit six-step singularly P-stable method with vanished phase-lag and its derivatives up to fifth order for the numerical integration of the one-dimensional radial time independent Schrödinger equation. The periodicity region of the method is plotted and the numerical stability and phase properties of the new methods are analyzed. The advantage of the new method in comparison with similar methods—in terms of efficiency, accuracy and stability—have been shown by implementing them in the radial time-independent Schrödinger equation during the resonance problems with the use of the Woods–Saxon potential.
doi_str_mv 10.1007/s10910-020-01189-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479999756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479999756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5159d2dbe29473f9117e0191675167069b767a96d469b58e31e176f89b71d3043</originalsourceid><addsrcrecordid>eNp9UNtKxDAQDaLguvoDPgV8js70luRxWbzBgoL6HLptus3SNt2kRffH_AF_zKwVfHNgmGHmnDPMIeQS4RoB-I1HkAgMopCIQjI4IjNMecSEkPyYzCBKJZNc4ik5834LAFJkYkZ2C9rpd2ravjGFGWhtNjWzrtSOevPB_KD70HSbsclds6fPYZKvG01bPdS2pJV1dKg17cZWO1PkDfW2GQdjO2or-lLU7uuzDPQgp3djflick5Mqb7y--K1z8nZ3-7p8YKun-8flYsWKGOXAUkxlGZVrHcmEx5VE5BpQYsbTkJDJNc94LrMyCW0qdIwaeVaJMMcyhiSek6tJt3d2N2o_qK0dXRdOqijhMgRPs4CKJlThrPdOV6p3ps3dXiGog7VqslYFa9WPtQoCKZ5IPoAPz_1J_8P6Bjx4fK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479999756</pqid></control><display><type>article</type><title>A new implicit high-order six-step singularly P-stable method for the numerical solution of Schrödinger equation</title><source>Springer Nature</source><creator>Shokri, Ali ; Mehdizadeh Khalsaraei, Mohammad</creator><creatorcontrib>Shokri, Ali ; Mehdizadeh Khalsaraei, Mohammad</creatorcontrib><description>In this paper, we present a new implicit six-step singularly P-stable method with vanished phase-lag and its derivatives up to fifth order for the numerical integration of the one-dimensional radial time independent Schrödinger equation. The periodicity region of the method is plotted and the numerical stability and phase properties of the new methods are analyzed. The advantage of the new method in comparison with similar methods—in terms of efficiency, accuracy and stability—have been shown by implementing them in the radial time-independent Schrödinger equation during the resonance problems with the use of the Woods–Saxon potential.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-020-01189-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Math. Applications in Chemistry ; Numerical integration ; Numerical stability ; Original Paper ; Phase lag ; Physical Chemistry ; Schrodinger equation ; Stability analysis ; Theoretical and Computational Chemistry</subject><ispartof>Journal of mathematical chemistry, 2021, Vol.59 (1), p.224-249</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5159d2dbe29473f9117e0191675167069b767a96d469b58e31e176f89b71d3043</citedby><cites>FETCH-LOGICAL-c319t-5159d2dbe29473f9117e0191675167069b767a96d469b58e31e176f89b71d3043</cites><orcidid>0000-0003-2699-1490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shokri, Ali</creatorcontrib><creatorcontrib>Mehdizadeh Khalsaraei, Mohammad</creatorcontrib><title>A new implicit high-order six-step singularly P-stable method for the numerical solution of Schrödinger equation</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>In this paper, we present a new implicit six-step singularly P-stable method with vanished phase-lag and its derivatives up to fifth order for the numerical integration of the one-dimensional radial time independent Schrödinger equation. The periodicity region of the method is plotted and the numerical stability and phase properties of the new methods are analyzed. The advantage of the new method in comparison with similar methods—in terms of efficiency, accuracy and stability—have been shown by implementing them in the radial time-independent Schrödinger equation during the resonance problems with the use of the Woods–Saxon potential.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Math. Applications in Chemistry</subject><subject>Numerical integration</subject><subject>Numerical stability</subject><subject>Original Paper</subject><subject>Phase lag</subject><subject>Physical Chemistry</subject><subject>Schrodinger equation</subject><subject>Stability analysis</subject><subject>Theoretical and Computational Chemistry</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKxDAQDaLguvoDPgV8js70luRxWbzBgoL6HLptus3SNt2kRffH_AF_zKwVfHNgmGHmnDPMIeQS4RoB-I1HkAgMopCIQjI4IjNMecSEkPyYzCBKJZNc4ik5834LAFJkYkZ2C9rpd2ravjGFGWhtNjWzrtSOevPB_KD70HSbsclds6fPYZKvG01bPdS2pJV1dKg17cZWO1PkDfW2GQdjO2or-lLU7uuzDPQgp3djflick5Mqb7y--K1z8nZ3-7p8YKun-8flYsWKGOXAUkxlGZVrHcmEx5VE5BpQYsbTkJDJNc94LrMyCW0qdIwaeVaJMMcyhiSek6tJt3d2N2o_qK0dXRdOqijhMgRPs4CKJlThrPdOV6p3ps3dXiGog7VqslYFa9WPtQoCKZ5IPoAPz_1J_8P6Bjx4fK0</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Shokri, Ali</creator><creator>Mehdizadeh Khalsaraei, Mohammad</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2699-1490</orcidid></search><sort><creationdate>2021</creationdate><title>A new implicit high-order six-step singularly P-stable method for the numerical solution of Schrödinger equation</title><author>Shokri, Ali ; Mehdizadeh Khalsaraei, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5159d2dbe29473f9117e0191675167069b767a96d469b58e31e176f89b71d3043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Math. Applications in Chemistry</topic><topic>Numerical integration</topic><topic>Numerical stability</topic><topic>Original Paper</topic><topic>Phase lag</topic><topic>Physical Chemistry</topic><topic>Schrodinger equation</topic><topic>Stability analysis</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shokri, Ali</creatorcontrib><creatorcontrib>Mehdizadeh Khalsaraei, Mohammad</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shokri, Ali</au><au>Mehdizadeh Khalsaraei, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new implicit high-order six-step singularly P-stable method for the numerical solution of Schrödinger equation</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2021</date><risdate>2021</risdate><volume>59</volume><issue>1</issue><spage>224</spage><epage>249</epage><pages>224-249</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>In this paper, we present a new implicit six-step singularly P-stable method with vanished phase-lag and its derivatives up to fifth order for the numerical integration of the one-dimensional radial time independent Schrödinger equation. The periodicity region of the method is plotted and the numerical stability and phase properties of the new methods are analyzed. The advantage of the new method in comparison with similar methods—in terms of efficiency, accuracy and stability—have been shown by implementing them in the radial time-independent Schrödinger equation during the resonance problems with the use of the Woods–Saxon potential.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-020-01189-0</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2699-1490</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0259-9791
ispartof Journal of mathematical chemistry, 2021, Vol.59 (1), p.224-249
issn 0259-9791
1572-8897
language eng
recordid cdi_proquest_journals_2479999756
source Springer Nature
subjects Chemistry
Chemistry and Materials Science
Math. Applications in Chemistry
Numerical integration
Numerical stability
Original Paper
Phase lag
Physical Chemistry
Schrodinger equation
Stability analysis
Theoretical and Computational Chemistry
title A new implicit high-order six-step singularly P-stable method for the numerical solution of Schrödinger equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20implicit%20high-order%20six-step%20singularly%20P-stable%20method%20for%20the%20numerical%20solution%20of%20Schr%C3%B6dinger%20equation&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Shokri,%20Ali&rft.date=2021&rft.volume=59&rft.issue=1&rft.spage=224&rft.epage=249&rft.pages=224-249&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-020-01189-0&rft_dat=%3Cproquest_cross%3E2479999756%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-5159d2dbe29473f9117e0191675167069b767a96d469b58e31e176f89b71d3043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2479999756&rft_id=info:pmid/&rfr_iscdi=true