Loading…

Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages

The interpretation of patterns of biodiversity requires the disentanglement of geographical and environmental variables. Disjunct alpine communities are geographically isolated from one another but experience similar environmental impacts. Isolated homogenous habitats may promote speciation but cons...

Full description

Saved in:
Bibliographic Details
Published in:Dōngwùxué yánjiū 2020-11, Vol.41 (6), p.670-683
Main Authors: Song, Wen-Yu, Li, Xue-You, Chen, Zhong-Zheng, Li, Quan, Onditi, Kenneth Otieno, He, Shui-Wang, Jiang, Xue-Long
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The interpretation of patterns of biodiversity requires the disentanglement of geographical and environmental variables. Disjunct alpine communities are geographically isolated from one another but experience similar environmental impacts. Isolated homogenous habitats may promote speciation but constrain functional trait variation. In this study, we examined the hypothesis that dispersal limitation promotes taxonomic divergence, whereas habitat similarity in alpine mountains leads to functional convergence. We performed standardized field investigation to sample non-volant small mammals from 18 prominent alpine sites in the Three Parallel Rivers area. We estimated indices quantifying taxonomic and functional alpha- and beta-diversity, as well as beta-diversity components. We then assessed the respective importance of geographical and environmental predictors in explaining taxonomic and functional compositions. No evidence was found to show that species were more functionally similar than expected in local assemblages. However, the taxonomic turnover components were higher than functional ones (0.471±0.230 vs. 0.243±0.215), with nestedness components showing the opposite pattern (0.063±0.054 vs. 0.269±0.225). This indicated that differences in taxonomic compositions between sites occurred from replacement of functionally similar species. Geographical barriers were the key factor influencing both taxonomic total dissimilarity and turnover components, whereas functional betadiversity was primarily explained by climatic factors such as minimum temperature of the coldest month. Our findings provide empirical evidence that taxonomic and functional diversity patterns can be independently driven by different ecological processes. Our results point to the importance of clarifying different components of beta-diversity to understand the underlying mechanisms of community assembly. These results also shed light on the assembly rules and ecological processes of terrestrial mammal communities in extreme environments.
ISSN:0254-5853
DOI:10.24272/j.issn.2095-8137.2020.085