Loading…
OPPNets and Rural Areas: An Opportunistic Solution for Remote Communications
Many rural areas along Spain do not have access to the Internet. Despite the huge spread of technology that has taken place during recent years, some rural districts and isolated villages have a lack of proper communication infrastructures. Moreover, these areas and the connected regions are notably...
Saved in:
Published in: | Wireless communications and mobile computing 2021, Vol.2021 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many rural areas along Spain do not have access to the Internet. Despite the huge spread of technology that has taken place during recent years, some rural districts and isolated villages have a lack of proper communication infrastructures. Moreover, these areas and the connected regions are notably experiencing a technological gap. As a consequence of this, the implementation of technological health solutions becomes impracticable in these zones where demographic conditions are especially particular. Thus, inhabitants over 65 suppose a large portion of such population, and many elderly people live alone at their homes. These circumstances also impact on local businesses which are widely related to the agricultural and livestock industry. Taking into account this situation, this paper proposes a solution based on an opportunistic network algorithm which enables the deployment of technological communication solutions for both elderly healthcare and livestock industrial activities in rural areas. This way, two applications are proposed: a presence detection platform for elderly people who live alone and an analytic performance measurement system for livestock. The algorithm is evaluated considering several simulations under multiple conditions, comparing the delivery probability, latency, and overhead outcomes with other well-known opportunistic routing algorithms. As a result, the proposed solution quadruples the delivery probability of Prophet, which presents the best results among the benchmark solutions and greatly reduces the overhead regarding other solutions such as Epidemic or Prophet. This way, the proposed approach provides a reliable mechanism for the data transmission in these scenarios. |
---|---|
ISSN: | 1530-8669 1530-8677 |
DOI: | 10.1155/2021/8883501 |