Loading…

Enhanced electrocatalytic activity of CuO-SnO2 nanocomposite in alkaline medium

The development of low cost, long-term stable and highly efficient electrocatalyst is one of the major current research activities towards electrochemical water oxidation process for the clean-energy hydrogen production. The transition metal oxides (CuO, TiO 2 , NiO, Co 2 O 3 , etc.,) have been desi...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2021, Vol.127 (1), Article 66
Main Authors: Kumar, M. Praveen, Murugadoss, G., Mangalaraja, R. V., Kumar, M. Rajesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-4d0bb19a10399a0d7d0b8daa96ae87dc1042262b409b399e8881ee01cfb306263
cites cdi_FETCH-LOGICAL-c356t-4d0bb19a10399a0d7d0b8daa96ae87dc1042262b409b399e8881ee01cfb306263
container_end_page
container_issue 1
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 127
creator Kumar, M. Praveen
Murugadoss, G.
Mangalaraja, R. V.
Kumar, M. Rajesh
description The development of low cost, long-term stable and highly efficient electrocatalyst is one of the major current research activities towards electrochemical water oxidation process for the clean-energy hydrogen production. The transition metal oxides (CuO, TiO 2 , NiO, Co 2 O 3 , etc.,) have been desirable for the oxygen evolution reaction (OER) in alkaline electrolyte. Among these transition metal oxides, the CuO based composites are most promising constituents for the water oxidation process due to their good electronic properties and the anticipated synergistic effect to alter the surface properties of the materials dramatically to favor the electrocatalysis. Here, we have reported the synthesis of CuO-SnO 2 nanoparticles network by a facile chemical method as the electrocatalyst for an efficient OER. The physiochemical properties of CuO-SnO 2 nanoparticles network electrocatalyst were characterized by using various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopies (XPS) and transmission electron microscopy (TEM) for their structural, absorption/presence of functional groups, elemental composition and morphology, respectively. Further, the electrochemical properties of the catalysts were investigated using cyclic voltammetry (CV), chronopotentiometry and Tafel curve measurements in alkaline electrolyte. The electrocatalysts showed a low onset potential of 1.39 V vs reversible hydrogen electrode (RHE) and high stability for 6 h in 1.0 M KOH electrolyte, which demonstrated their better performance than the benchmark Ni electrocatalyst.
doi_str_mv 10.1007/s00339-020-04228-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480341216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480341216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4d0bb19a10399a0d7d0b8daa96ae87dc1042262b409b399e8881ee01cfb306263</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJh21ylGX9gIUe1HNI01S7tsmatML-e7NW8OZchoHnnRkehC4pXFOA8iYBcK4IMCAgGJNEHKEFFZwRKDgcowUoURLJVXGKzlLaQq7MLVC19u_GW9dg1zs7xmDNaPr92Fls7Nh9deMehxavpoo8-4phb3ywYdiF1I0Odx6b_sP0nXd4cE03DefopDV9che_fYle79cvq0eyqR6eVncbYvltMRLRQF1TZShwpQw0ZZ5lY4wqjJNlY-nhu4LVAlSdCSelpM4BtW3NoWAFX6Kree8uhs_JpVFvwxR9PqmZkMAFZfRAsZmyMaQUXat3sRtM3GsK-iBOz-J0Fqd_xGmRQ3wOpQz7Nxf_Vv-T-gY-Z3AU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480341216</pqid></control><display><type>article</type><title>Enhanced electrocatalytic activity of CuO-SnO2 nanocomposite in alkaline medium</title><source>Springer Link</source><creator>Kumar, M. Praveen ; Murugadoss, G. ; Mangalaraja, R. V. ; Kumar, M. Rajesh</creator><creatorcontrib>Kumar, M. Praveen ; Murugadoss, G. ; Mangalaraja, R. V. ; Kumar, M. Rajesh</creatorcontrib><description>The development of low cost, long-term stable and highly efficient electrocatalyst is one of the major current research activities towards electrochemical water oxidation process for the clean-energy hydrogen production. The transition metal oxides (CuO, TiO 2 , NiO, Co 2 O 3 , etc.,) have been desirable for the oxygen evolution reaction (OER) in alkaline electrolyte. Among these transition metal oxides, the CuO based composites are most promising constituents for the water oxidation process due to their good electronic properties and the anticipated synergistic effect to alter the surface properties of the materials dramatically to favor the electrocatalysis. Here, we have reported the synthesis of CuO-SnO 2 nanoparticles network by a facile chemical method as the electrocatalyst for an efficient OER. The physiochemical properties of CuO-SnO 2 nanoparticles network electrocatalyst were characterized by using various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopies (XPS) and transmission electron microscopy (TEM) for their structural, absorption/presence of functional groups, elemental composition and morphology, respectively. Further, the electrochemical properties of the catalysts were investigated using cyclic voltammetry (CV), chronopotentiometry and Tafel curve measurements in alkaline electrolyte. The electrocatalysts showed a low onset potential of 1.39 V vs reversible hydrogen electrode (RHE) and high stability for 6 h in 1.0 M KOH electrolyte, which demonstrated their better performance than the benchmark Ni electrocatalyst.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-020-04228-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Characterization and Evaluation of Materials ; Clean energy ; Cobalt oxides ; Condensed Matter Physics ; Copper oxides ; Electrocatalysts ; Electrochemical analysis ; Electrolytes ; Fourier transforms ; Functional groups ; Hydrogen production ; Hydrogen-based energy ; Machines ; Manufacturing ; Materials science ; Metal oxides ; Morphology ; Nanocomposites ; Nanoparticles ; Nanotechnology ; Optical and Electronic Materials ; Oxidation ; Oxygen evolution reactions ; Photoelectrons ; Physics ; Physics and Astronomy ; Physiochemistry ; Processes ; Properties (attributes) ; Surface properties ; Surfaces and Interfaces ; Synergistic effect ; Thin Films ; Tin dioxide ; Titanium dioxide ; Transition metal oxides ; X ray photoelectron spectroscopy</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2021, Vol.127 (1), Article 66</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4d0bb19a10399a0d7d0b8daa96ae87dc1042262b409b399e8881ee01cfb306263</citedby><cites>FETCH-LOGICAL-c356t-4d0bb19a10399a0d7d0b8daa96ae87dc1042262b409b399e8881ee01cfb306263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, M. Praveen</creatorcontrib><creatorcontrib>Murugadoss, G.</creatorcontrib><creatorcontrib>Mangalaraja, R. V.</creatorcontrib><creatorcontrib>Kumar, M. Rajesh</creatorcontrib><title>Enhanced electrocatalytic activity of CuO-SnO2 nanocomposite in alkaline medium</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>The development of low cost, long-term stable and highly efficient electrocatalyst is one of the major current research activities towards electrochemical water oxidation process for the clean-energy hydrogen production. The transition metal oxides (CuO, TiO 2 , NiO, Co 2 O 3 , etc.,) have been desirable for the oxygen evolution reaction (OER) in alkaline electrolyte. Among these transition metal oxides, the CuO based composites are most promising constituents for the water oxidation process due to their good electronic properties and the anticipated synergistic effect to alter the surface properties of the materials dramatically to favor the electrocatalysis. Here, we have reported the synthesis of CuO-SnO 2 nanoparticles network by a facile chemical method as the electrocatalyst for an efficient OER. The physiochemical properties of CuO-SnO 2 nanoparticles network electrocatalyst were characterized by using various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopies (XPS) and transmission electron microscopy (TEM) for their structural, absorption/presence of functional groups, elemental composition and morphology, respectively. Further, the electrochemical properties of the catalysts were investigated using cyclic voltammetry (CV), chronopotentiometry and Tafel curve measurements in alkaline electrolyte. The electrocatalysts showed a low onset potential of 1.39 V vs reversible hydrogen electrode (RHE) and high stability for 6 h in 1.0 M KOH electrolyte, which demonstrated their better performance than the benchmark Ni electrocatalyst.</description><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Clean energy</subject><subject>Cobalt oxides</subject><subject>Condensed Matter Physics</subject><subject>Copper oxides</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Fourier transforms</subject><subject>Functional groups</subject><subject>Hydrogen production</subject><subject>Hydrogen-based energy</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectrons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physiochemistry</subject><subject>Processes</subject><subject>Properties (attributes)</subject><subject>Surface properties</subject><subject>Surfaces and Interfaces</subject><subject>Synergistic effect</subject><subject>Thin Films</subject><subject>Tin dioxide</subject><subject>Titanium dioxide</subject><subject>Transition metal oxides</subject><subject>X ray photoelectron spectroscopy</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJh21ylGX9gIUe1HNI01S7tsmatML-e7NW8OZchoHnnRkehC4pXFOA8iYBcK4IMCAgGJNEHKEFFZwRKDgcowUoURLJVXGKzlLaQq7MLVC19u_GW9dg1zs7xmDNaPr92Fls7Nh9deMehxavpoo8-4phb3ywYdiF1I0Odx6b_sP0nXd4cE03DefopDV9che_fYle79cvq0eyqR6eVncbYvltMRLRQF1TZShwpQw0ZZ5lY4wqjJNlY-nhu4LVAlSdCSelpM4BtW3NoWAFX6Kree8uhs_JpVFvwxR9PqmZkMAFZfRAsZmyMaQUXat3sRtM3GsK-iBOz-J0Fqd_xGmRQ3wOpQz7Nxf_Vv-T-gY-Z3AU</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Kumar, M. Praveen</creator><creator>Murugadoss, G.</creator><creator>Mangalaraja, R. V.</creator><creator>Kumar, M. Rajesh</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Enhanced electrocatalytic activity of CuO-SnO2 nanocomposite in alkaline medium</title><author>Kumar, M. Praveen ; Murugadoss, G. ; Mangalaraja, R. V. ; Kumar, M. Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4d0bb19a10399a0d7d0b8daa96ae87dc1042262b409b399e8881ee01cfb306263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Clean energy</topic><topic>Cobalt oxides</topic><topic>Condensed Matter Physics</topic><topic>Copper oxides</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Fourier transforms</topic><topic>Functional groups</topic><topic>Hydrogen production</topic><topic>Hydrogen-based energy</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectrons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physiochemistry</topic><topic>Processes</topic><topic>Properties (attributes)</topic><topic>Surface properties</topic><topic>Surfaces and Interfaces</topic><topic>Synergistic effect</topic><topic>Thin Films</topic><topic>Tin dioxide</topic><topic>Titanium dioxide</topic><topic>Transition metal oxides</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, M. Praveen</creatorcontrib><creatorcontrib>Murugadoss, G.</creatorcontrib><creatorcontrib>Mangalaraja, R. V.</creatorcontrib><creatorcontrib>Kumar, M. Rajesh</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, M. Praveen</au><au>Murugadoss, G.</au><au>Mangalaraja, R. V.</au><au>Kumar, M. Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced electrocatalytic activity of CuO-SnO2 nanocomposite in alkaline medium</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2021</date><risdate>2021</risdate><volume>127</volume><issue>1</issue><artnum>66</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>The development of low cost, long-term stable and highly efficient electrocatalyst is one of the major current research activities towards electrochemical water oxidation process for the clean-energy hydrogen production. The transition metal oxides (CuO, TiO 2 , NiO, Co 2 O 3 , etc.,) have been desirable for the oxygen evolution reaction (OER) in alkaline electrolyte. Among these transition metal oxides, the CuO based composites are most promising constituents for the water oxidation process due to their good electronic properties and the anticipated synergistic effect to alter the surface properties of the materials dramatically to favor the electrocatalysis. Here, we have reported the synthesis of CuO-SnO 2 nanoparticles network by a facile chemical method as the electrocatalyst for an efficient OER. The physiochemical properties of CuO-SnO 2 nanoparticles network electrocatalyst were characterized by using various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopies (XPS) and transmission electron microscopy (TEM) for their structural, absorption/presence of functional groups, elemental composition and morphology, respectively. Further, the electrochemical properties of the catalysts were investigated using cyclic voltammetry (CV), chronopotentiometry and Tafel curve measurements in alkaline electrolyte. The electrocatalysts showed a low onset potential of 1.39 V vs reversible hydrogen electrode (RHE) and high stability for 6 h in 1.0 M KOH electrolyte, which demonstrated their better performance than the benchmark Ni electrocatalyst.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-020-04228-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2021, Vol.127 (1), Article 66
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2480341216
source Springer Link
subjects Applied physics
Characterization and Evaluation of Materials
Clean energy
Cobalt oxides
Condensed Matter Physics
Copper oxides
Electrocatalysts
Electrochemical analysis
Electrolytes
Fourier transforms
Functional groups
Hydrogen production
Hydrogen-based energy
Machines
Manufacturing
Materials science
Metal oxides
Morphology
Nanocomposites
Nanoparticles
Nanotechnology
Optical and Electronic Materials
Oxidation
Oxygen evolution reactions
Photoelectrons
Physics
Physics and Astronomy
Physiochemistry
Processes
Properties (attributes)
Surface properties
Surfaces and Interfaces
Synergistic effect
Thin Films
Tin dioxide
Titanium dioxide
Transition metal oxides
X ray photoelectron spectroscopy
title Enhanced electrocatalytic activity of CuO-SnO2 nanocomposite in alkaline medium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20electrocatalytic%20activity%20of%20CuO-SnO2%20nanocomposite%20in%20alkaline%20medium&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Kumar,%20M.%20Praveen&rft.date=2021&rft.volume=127&rft.issue=1&rft.artnum=66&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-020-04228-4&rft_dat=%3Cproquest_cross%3E2480341216%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-4d0bb19a10399a0d7d0b8daa96ae87dc1042262b409b399e8881ee01cfb306263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480341216&rft_id=info:pmid/&rfr_iscdi=true