Loading…
A tungsten external heater for BX90 diamond anvil cells with a range up to 1700 K
Resistive heating of a sample in a diamond anvil cell (DAC) can generate a homogeneous temperature field across the sample chamber with reliable temperatures measured by a thermocouple. It is of importance in experiments aiming at exploring phase diagrams and quantifying thermoelastic properties of...
Saved in:
Published in: | Review of scientific instruments 2021-01, Vol.92 (1), p.013903-013903 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Resistive heating of a sample in a diamond anvil cell (DAC) can generate a homogeneous temperature field across the sample chamber with reliable temperatures measured by a thermocouple. It is of importance in experiments aiming at exploring phase diagrams and quantifying thermoelastic properties of materials. Here, we present a ring-heater design developed for BX90 diamond anvil cells (DACs). It is made of a ring-shaped aluminum oxide holder hosting a tungsten wire coil inside and coupled with Ar + 2% H2 gas to prevent oxidation during experiment. This modular plug-and-play design enables in situ studies of samples via x-ray diffraction up to a temperature of 1700 K. Temperature in the BX90 sample volume as measured through a thermocouple was calibrated using the melting point of gold. As an application of this design, we report the thermal expansion coefficient of MgO at 9.5(1) GPa. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/5.0009663 |