Loading…

Modeling the landslide-generated debris flow from formation to propagation and run-out by considering the effect of vegetation

This study aimed to investigate the formation and propagation processes of a landslide-generated debris flow within a small catchment while considering the effects of vegetation. This process is divided into three stages: rainfall infiltration, slope failure, and debris flow routing, according to th...

Full description

Saved in:
Bibliographic Details
Published in:Landslides 2021, Vol.18 (1), p.43-58
Main Authors: Liu, Wei, Yang, Zongji, He, Siming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to investigate the formation and propagation processes of a landslide-generated debris flow within a small catchment while considering the effects of vegetation. This process is divided into three stages: rainfall infiltration, slope failure, and debris flow routing, according to their different mechanisms. Existing models that involve the effect of vegetation for each stage, including Richards’s model, infinite slope stability model, and the enhanced two-phase debris flow model (Pudasaini 2012 ), were coupled. The tridiagonal matrix algorithm and finite volume method were applied to solve these equations, respectively. Finally, the approach was tested by application to the 2018 debris flow event in the Yindongzi catchment, China. The results showed that the proposed comprehensive model could effectively describe the behaviors of each stage during the formation and propagation processes of landslide-generated debris flows in vegetated area. The roles of vegetation on each stage, such as root water uptake and root soil reinforcement, were also analyzed by performing several scenarios.
ISSN:1612-510X
1612-5118
DOI:10.1007/s10346-020-01478-4