Loading…

Automatic tutoring system to support cross-disciplinary training in Big Data

During the last decade, Big Data has emerged as a powerful alternative to address latent challenges in scalable data management. The ever-growing amount and rapid evolution of tools, techniques, and technologies associated to Big Data require a broad skill set and deep knowledge of several domains—r...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing 2021-02, Vol.77 (2), p.1818-1852
Main Authors: Solé-Beteta, Xavier, Navarro, Joan, Vernet, David, Zaballos, Agustín, Torres-Kompen, Ricardo, Fonseca, David, Briones, Alan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-88ace0a43d3c57a58e7898c26e404bffd54ca0a7526ffbc77350fca02943a5cc3
cites cdi_FETCH-LOGICAL-c362t-88ace0a43d3c57a58e7898c26e404bffd54ca0a7526ffbc77350fca02943a5cc3
container_end_page 1852
container_issue 2
container_start_page 1818
container_title The Journal of supercomputing
container_volume 77
creator Solé-Beteta, Xavier
Navarro, Joan
Vernet, David
Zaballos, Agustín
Torres-Kompen, Ricardo
Fonseca, David
Briones, Alan
description During the last decade, Big Data has emerged as a powerful alternative to address latent challenges in scalable data management. The ever-growing amount and rapid evolution of tools, techniques, and technologies associated to Big Data require a broad skill set and deep knowledge of several domains—ranging from engineering to business, including computer science, networking, or analytics among others—which complicate the conception and deployment of academic programs and methodologies able to effectively train students in this discipline. The purpose of this paper is to propose a learning and teaching framework committed to train masters’ students in Big Data by conceiving an intelligent tutoring system aimed to (1) automatically tracking students’ progress, (2) effectively exploiting the diversity of their backgrounds, and (3) assisting the teaching staff on the course operation. Obtained results endorse the feasibility of this proposal and encourage practitioners to use this approach in other domains.
doi_str_mv 10.1007/s11227-020-03330-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480787500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480787500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-88ace0a43d3c57a58e7898c26e404bffd54ca0a7526ffbc77350fca02943a5cc3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Q2H5v0WOsnFLzoOaRpUlLa3TXJQvvvzXYFb55mmHnfmZcHodsK7isA-ZCqilJJgAIBxhiQwxmaVEIyAlzxczSBWVkpweklukppCwCcSTZBy3mf273JweJcuhiaDU7HlN0e5xanvuvamLGNbUpkHZIN3S40Jh5xjiY0gzo0-DFs8JPJ5hpdeLNL7ua3TtHXy_Pn4o0sP17fF_MlsaymmShlrAPD2ZpZIY1QTqqZsrR2HPjK-7Xg1oCRgtber6yUTIAvEzrjzAhr2RTdjXe72H73LmW9bfvYlJeacgVSSQFQVHRUndJH53UXw75k1xXogZoeqelCTZ-o6UMxsdGUuoGFi3-n_3H9AFh-cRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480787500</pqid></control><display><type>article</type><title>Automatic tutoring system to support cross-disciplinary training in Big Data</title><source>Springer Nature</source><creator>Solé-Beteta, Xavier ; Navarro, Joan ; Vernet, David ; Zaballos, Agustín ; Torres-Kompen, Ricardo ; Fonseca, David ; Briones, Alan</creator><creatorcontrib>Solé-Beteta, Xavier ; Navarro, Joan ; Vernet, David ; Zaballos, Agustín ; Torres-Kompen, Ricardo ; Fonseca, David ; Briones, Alan</creatorcontrib><description>During the last decade, Big Data has emerged as a powerful alternative to address latent challenges in scalable data management. The ever-growing amount and rapid evolution of tools, techniques, and technologies associated to Big Data require a broad skill set and deep knowledge of several domains—ranging from engineering to business, including computer science, networking, or analytics among others—which complicate the conception and deployment of academic programs and methodologies able to effectively train students in this discipline. The purpose of this paper is to propose a learning and teaching framework committed to train masters’ students in Big Data by conceiving an intelligent tutoring system aimed to (1) automatically tracking students’ progress, (2) effectively exploiting the diversity of their backgrounds, and (3) assisting the teaching staff on the course operation. Obtained results endorse the feasibility of this proposal and encourage practitioners to use this approach in other domains.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-020-03330-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Big Data ; Compilers ; Computer Science ; Data management ; Domains ; Interpreters ; Processor Architectures ; Programming Languages ; Students ; Supercomputing Education: Thinking in Parallel ; Tutoring</subject><ispartof>The Journal of supercomputing, 2021-02, Vol.77 (2), p.1818-1852</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-88ace0a43d3c57a58e7898c26e404bffd54ca0a7526ffbc77350fca02943a5cc3</citedby><cites>FETCH-LOGICAL-c362t-88ace0a43d3c57a58e7898c26e404bffd54ca0a7526ffbc77350fca02943a5cc3</cites><orcidid>0000-0003-3916-9279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Solé-Beteta, Xavier</creatorcontrib><creatorcontrib>Navarro, Joan</creatorcontrib><creatorcontrib>Vernet, David</creatorcontrib><creatorcontrib>Zaballos, Agustín</creatorcontrib><creatorcontrib>Torres-Kompen, Ricardo</creatorcontrib><creatorcontrib>Fonseca, David</creatorcontrib><creatorcontrib>Briones, Alan</creatorcontrib><title>Automatic tutoring system to support cross-disciplinary training in Big Data</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>During the last decade, Big Data has emerged as a powerful alternative to address latent challenges in scalable data management. The ever-growing amount and rapid evolution of tools, techniques, and technologies associated to Big Data require a broad skill set and deep knowledge of several domains—ranging from engineering to business, including computer science, networking, or analytics among others—which complicate the conception and deployment of academic programs and methodologies able to effectively train students in this discipline. The purpose of this paper is to propose a learning and teaching framework committed to train masters’ students in Big Data by conceiving an intelligent tutoring system aimed to (1) automatically tracking students’ progress, (2) effectively exploiting the diversity of their backgrounds, and (3) assisting the teaching staff on the course operation. Obtained results endorse the feasibility of this proposal and encourage practitioners to use this approach in other domains.</description><subject>Big Data</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Data management</subject><subject>Domains</subject><subject>Interpreters</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Students</subject><subject>Supercomputing Education: Thinking in Parallel</subject><subject>Tutoring</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Q2H5v0WOsnFLzoOaRpUlLa3TXJQvvvzXYFb55mmHnfmZcHodsK7isA-ZCqilJJgAIBxhiQwxmaVEIyAlzxczSBWVkpweklukppCwCcSTZBy3mf273JweJcuhiaDU7HlN0e5xanvuvamLGNbUpkHZIN3S40Jh5xjiY0gzo0-DFs8JPJ5hpdeLNL7ua3TtHXy_Pn4o0sP17fF_MlsaymmShlrAPD2ZpZIY1QTqqZsrR2HPjK-7Xg1oCRgtber6yUTIAvEzrjzAhr2RTdjXe72H73LmW9bfvYlJeacgVSSQFQVHRUndJH53UXw75k1xXogZoeqelCTZ-o6UMxsdGUuoGFi3-n_3H9AFh-cRc</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Solé-Beteta, Xavier</creator><creator>Navarro, Joan</creator><creator>Vernet, David</creator><creator>Zaballos, Agustín</creator><creator>Torres-Kompen, Ricardo</creator><creator>Fonseca, David</creator><creator>Briones, Alan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3916-9279</orcidid></search><sort><creationdate>20210201</creationdate><title>Automatic tutoring system to support cross-disciplinary training in Big Data</title><author>Solé-Beteta, Xavier ; Navarro, Joan ; Vernet, David ; Zaballos, Agustín ; Torres-Kompen, Ricardo ; Fonseca, David ; Briones, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-88ace0a43d3c57a58e7898c26e404bffd54ca0a7526ffbc77350fca02943a5cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Big Data</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Data management</topic><topic>Domains</topic><topic>Interpreters</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Students</topic><topic>Supercomputing Education: Thinking in Parallel</topic><topic>Tutoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solé-Beteta, Xavier</creatorcontrib><creatorcontrib>Navarro, Joan</creatorcontrib><creatorcontrib>Vernet, David</creatorcontrib><creatorcontrib>Zaballos, Agustín</creatorcontrib><creatorcontrib>Torres-Kompen, Ricardo</creatorcontrib><creatorcontrib>Fonseca, David</creatorcontrib><creatorcontrib>Briones, Alan</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solé-Beteta, Xavier</au><au>Navarro, Joan</au><au>Vernet, David</au><au>Zaballos, Agustín</au><au>Torres-Kompen, Ricardo</au><au>Fonseca, David</au><au>Briones, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic tutoring system to support cross-disciplinary training in Big Data</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>77</volume><issue>2</issue><spage>1818</spage><epage>1852</epage><pages>1818-1852</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>During the last decade, Big Data has emerged as a powerful alternative to address latent challenges in scalable data management. The ever-growing amount and rapid evolution of tools, techniques, and technologies associated to Big Data require a broad skill set and deep knowledge of several domains—ranging from engineering to business, including computer science, networking, or analytics among others—which complicate the conception and deployment of academic programs and methodologies able to effectively train students in this discipline. The purpose of this paper is to propose a learning and teaching framework committed to train masters’ students in Big Data by conceiving an intelligent tutoring system aimed to (1) automatically tracking students’ progress, (2) effectively exploiting the diversity of their backgrounds, and (3) assisting the teaching staff on the course operation. Obtained results endorse the feasibility of this proposal and encourage practitioners to use this approach in other domains.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-020-03330-x</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0003-3916-9279</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2021-02, Vol.77 (2), p.1818-1852
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2480787500
source Springer Nature
subjects Big Data
Compilers
Computer Science
Data management
Domains
Interpreters
Processor Architectures
Programming Languages
Students
Supercomputing Education: Thinking in Parallel
Tutoring
title Automatic tutoring system to support cross-disciplinary training in Big Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20tutoring%20system%20to%20support%20cross-disciplinary%20training%20in%20Big%20Data&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Sol%C3%A9-Beteta,%20Xavier&rft.date=2021-02-01&rft.volume=77&rft.issue=2&rft.spage=1818&rft.epage=1852&rft.pages=1818-1852&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-020-03330-x&rft_dat=%3Cproquest_cross%3E2480787500%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-88ace0a43d3c57a58e7898c26e404bffd54ca0a7526ffbc77350fca02943a5cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480787500&rft_id=info:pmid/&rfr_iscdi=true