Loading…
Automatic tutoring system to support cross-disciplinary training in Big Data
During the last decade, Big Data has emerged as a powerful alternative to address latent challenges in scalable data management. The ever-growing amount and rapid evolution of tools, techniques, and technologies associated to Big Data require a broad skill set and deep knowledge of several domains—r...
Saved in:
Published in: | The Journal of supercomputing 2021-02, Vol.77 (2), p.1818-1852 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-88ace0a43d3c57a58e7898c26e404bffd54ca0a7526ffbc77350fca02943a5cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-88ace0a43d3c57a58e7898c26e404bffd54ca0a7526ffbc77350fca02943a5cc3 |
container_end_page | 1852 |
container_issue | 2 |
container_start_page | 1818 |
container_title | The Journal of supercomputing |
container_volume | 77 |
creator | Solé-Beteta, Xavier Navarro, Joan Vernet, David Zaballos, Agustín Torres-Kompen, Ricardo Fonseca, David Briones, Alan |
description | During the last decade, Big Data has emerged as a powerful alternative to address latent challenges in scalable data management. The ever-growing amount and rapid evolution of tools, techniques, and technologies associated to Big Data require a broad skill set and deep knowledge of several domains—ranging from engineering to business, including computer science, networking, or analytics among others—which complicate the conception and deployment of academic programs and methodologies able to effectively train students in this discipline. The purpose of this paper is to propose a learning and teaching framework committed to train masters’ students in Big Data by conceiving an intelligent tutoring system aimed to (1) automatically tracking students’ progress, (2) effectively exploiting the diversity of their backgrounds, and (3) assisting the teaching staff on the course operation. Obtained results endorse the feasibility of this proposal and encourage practitioners to use this approach in other domains. |
doi_str_mv | 10.1007/s11227-020-03330-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480787500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480787500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-88ace0a43d3c57a58e7898c26e404bffd54ca0a7526ffbc77350fca02943a5cc3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Q2H5v0WOsnFLzoOaRpUlLa3TXJQvvvzXYFb55mmHnfmZcHodsK7isA-ZCqilJJgAIBxhiQwxmaVEIyAlzxczSBWVkpweklukppCwCcSTZBy3mf273JweJcuhiaDU7HlN0e5xanvuvamLGNbUpkHZIN3S40Jh5xjiY0gzo0-DFs8JPJ5hpdeLNL7ua3TtHXy_Pn4o0sP17fF_MlsaymmShlrAPD2ZpZIY1QTqqZsrR2HPjK-7Xg1oCRgtber6yUTIAvEzrjzAhr2RTdjXe72H73LmW9bfvYlJeacgVSSQFQVHRUndJH53UXw75k1xXogZoeqelCTZ-o6UMxsdGUuoGFi3-n_3H9AFh-cRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480787500</pqid></control><display><type>article</type><title>Automatic tutoring system to support cross-disciplinary training in Big Data</title><source>Springer Nature</source><creator>Solé-Beteta, Xavier ; Navarro, Joan ; Vernet, David ; Zaballos, Agustín ; Torres-Kompen, Ricardo ; Fonseca, David ; Briones, Alan</creator><creatorcontrib>Solé-Beteta, Xavier ; Navarro, Joan ; Vernet, David ; Zaballos, Agustín ; Torres-Kompen, Ricardo ; Fonseca, David ; Briones, Alan</creatorcontrib><description>During the last decade, Big Data has emerged as a powerful alternative to address latent challenges in scalable data management. The ever-growing amount and rapid evolution of tools, techniques, and technologies associated to Big Data require a broad skill set and deep knowledge of several domains—ranging from engineering to business, including computer science, networking, or analytics among others—which complicate the conception and deployment of academic programs and methodologies able to effectively train students in this discipline. The purpose of this paper is to propose a learning and teaching framework committed to train masters’ students in Big Data by conceiving an intelligent tutoring system aimed to (1) automatically tracking students’ progress, (2) effectively exploiting the diversity of their backgrounds, and (3) assisting the teaching staff on the course operation. Obtained results endorse the feasibility of this proposal and encourage practitioners to use this approach in other domains.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-020-03330-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Big Data ; Compilers ; Computer Science ; Data management ; Domains ; Interpreters ; Processor Architectures ; Programming Languages ; Students ; Supercomputing Education: Thinking in Parallel ; Tutoring</subject><ispartof>The Journal of supercomputing, 2021-02, Vol.77 (2), p.1818-1852</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-88ace0a43d3c57a58e7898c26e404bffd54ca0a7526ffbc77350fca02943a5cc3</citedby><cites>FETCH-LOGICAL-c362t-88ace0a43d3c57a58e7898c26e404bffd54ca0a7526ffbc77350fca02943a5cc3</cites><orcidid>0000-0003-3916-9279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Solé-Beteta, Xavier</creatorcontrib><creatorcontrib>Navarro, Joan</creatorcontrib><creatorcontrib>Vernet, David</creatorcontrib><creatorcontrib>Zaballos, Agustín</creatorcontrib><creatorcontrib>Torres-Kompen, Ricardo</creatorcontrib><creatorcontrib>Fonseca, David</creatorcontrib><creatorcontrib>Briones, Alan</creatorcontrib><title>Automatic tutoring system to support cross-disciplinary training in Big Data</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>During the last decade, Big Data has emerged as a powerful alternative to address latent challenges in scalable data management. The ever-growing amount and rapid evolution of tools, techniques, and technologies associated to Big Data require a broad skill set and deep knowledge of several domains—ranging from engineering to business, including computer science, networking, or analytics among others—which complicate the conception and deployment of academic programs and methodologies able to effectively train students in this discipline. The purpose of this paper is to propose a learning and teaching framework committed to train masters’ students in Big Data by conceiving an intelligent tutoring system aimed to (1) automatically tracking students’ progress, (2) effectively exploiting the diversity of their backgrounds, and (3) assisting the teaching staff on the course operation. Obtained results endorse the feasibility of this proposal and encourage practitioners to use this approach in other domains.</description><subject>Big Data</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Data management</subject><subject>Domains</subject><subject>Interpreters</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Students</subject><subject>Supercomputing Education: Thinking in Parallel</subject><subject>Tutoring</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Q2H5v0WOsnFLzoOaRpUlLa3TXJQvvvzXYFb55mmHnfmZcHodsK7isA-ZCqilJJgAIBxhiQwxmaVEIyAlzxczSBWVkpweklukppCwCcSTZBy3mf273JweJcuhiaDU7HlN0e5xanvuvamLGNbUpkHZIN3S40Jh5xjiY0gzo0-DFs8JPJ5hpdeLNL7ua3TtHXy_Pn4o0sP17fF_MlsaymmShlrAPD2ZpZIY1QTqqZsrR2HPjK-7Xg1oCRgtber6yUTIAvEzrjzAhr2RTdjXe72H73LmW9bfvYlJeacgVSSQFQVHRUndJH53UXw75k1xXogZoeqelCTZ-o6UMxsdGUuoGFi3-n_3H9AFh-cRc</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Solé-Beteta, Xavier</creator><creator>Navarro, Joan</creator><creator>Vernet, David</creator><creator>Zaballos, Agustín</creator><creator>Torres-Kompen, Ricardo</creator><creator>Fonseca, David</creator><creator>Briones, Alan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3916-9279</orcidid></search><sort><creationdate>20210201</creationdate><title>Automatic tutoring system to support cross-disciplinary training in Big Data</title><author>Solé-Beteta, Xavier ; Navarro, Joan ; Vernet, David ; Zaballos, Agustín ; Torres-Kompen, Ricardo ; Fonseca, David ; Briones, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-88ace0a43d3c57a58e7898c26e404bffd54ca0a7526ffbc77350fca02943a5cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Big Data</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Data management</topic><topic>Domains</topic><topic>Interpreters</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Students</topic><topic>Supercomputing Education: Thinking in Parallel</topic><topic>Tutoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solé-Beteta, Xavier</creatorcontrib><creatorcontrib>Navarro, Joan</creatorcontrib><creatorcontrib>Vernet, David</creatorcontrib><creatorcontrib>Zaballos, Agustín</creatorcontrib><creatorcontrib>Torres-Kompen, Ricardo</creatorcontrib><creatorcontrib>Fonseca, David</creatorcontrib><creatorcontrib>Briones, Alan</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solé-Beteta, Xavier</au><au>Navarro, Joan</au><au>Vernet, David</au><au>Zaballos, Agustín</au><au>Torres-Kompen, Ricardo</au><au>Fonseca, David</au><au>Briones, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic tutoring system to support cross-disciplinary training in Big Data</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>77</volume><issue>2</issue><spage>1818</spage><epage>1852</epage><pages>1818-1852</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>During the last decade, Big Data has emerged as a powerful alternative to address latent challenges in scalable data management. The ever-growing amount and rapid evolution of tools, techniques, and technologies associated to Big Data require a broad skill set and deep knowledge of several domains—ranging from engineering to business, including computer science, networking, or analytics among others—which complicate the conception and deployment of academic programs and methodologies able to effectively train students in this discipline. The purpose of this paper is to propose a learning and teaching framework committed to train masters’ students in Big Data by conceiving an intelligent tutoring system aimed to (1) automatically tracking students’ progress, (2) effectively exploiting the diversity of their backgrounds, and (3) assisting the teaching staff on the course operation. Obtained results endorse the feasibility of this proposal and encourage practitioners to use this approach in other domains.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-020-03330-x</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0003-3916-9279</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2021-02, Vol.77 (2), p.1818-1852 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2480787500 |
source | Springer Nature |
subjects | Big Data Compilers Computer Science Data management Domains Interpreters Processor Architectures Programming Languages Students Supercomputing Education: Thinking in Parallel Tutoring |
title | Automatic tutoring system to support cross-disciplinary training in Big Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20tutoring%20system%20to%20support%20cross-disciplinary%20training%20in%20Big%20Data&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Sol%C3%A9-Beteta,%20Xavier&rft.date=2021-02-01&rft.volume=77&rft.issue=2&rft.spage=1818&rft.epage=1852&rft.pages=1818-1852&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-020-03330-x&rft_dat=%3Cproquest_cross%3E2480787500%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-88ace0a43d3c57a58e7898c26e404bffd54ca0a7526ffbc77350fca02943a5cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480787500&rft_id=info:pmid/&rfr_iscdi=true |