Loading…

Unraveling microstrain-promoted structural evolution and thermally driven phase transition in c − Sc2 O3 nanocrystals at high pressure

Here, we report an irreversible cubic-to-monoclinic structural transition in cubic c − Sc2 O3 nanocrystals which occur at pressures above ∼ 8.9 GPa upon nonhydrostatic compression in association with a pronounced volume collapse. This phase-transition–induced anomaly is further confirmed by our expe...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2020-12, Vol.102 (21), p.1
Main Authors: Zou, Yongtao, Li, Mu, Zhang, Wei, Zhou, Cangtao, Yu, Tony, Zhuo, Hongbin, Wang, Yanbin, Zhao, Yusheng, Ruan, Shuangchen, Li, Baosheng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 21
container_start_page 1
container_title Physical review. B
container_volume 102
creator Zou, Yongtao
Li, Mu
Zhang, Wei
Zhou, Cangtao
Yu, Tony
Zhuo, Hongbin
Wang, Yanbin
Zhao, Yusheng
Ruan, Shuangchen
Li, Baosheng
description Here, we report an irreversible cubic-to-monoclinic structural transition in cubic c − Sc2 O3 nanocrystals which occur at pressures above ∼ 8.9 GPa upon nonhydrostatic compression in association with a pronounced volume collapse. This phase-transition–induced anomaly is further confirmed by our experimental Raman spectroscopy measurements and theoretical predictions. After annealing, however, this high-pressure monoclinic m − Sc2 O3 phase undergoes a reversible back-transformation to the cubic counterpart at ∼ 1123 K and 9.0 GPa. Our observed transition pressure of ∼ 8.9 GPa for the cubic-to-monoclinic structural evolution is significantly lower than that from the previously diamond-anvil-cell–based hydrostatic x-ray experiments because of the existence of internal microscopic stress and/or high-stress concentration in the specimen caused by grain-to-grain contacts upon nonhydrostatic compression, which promoted the cubic-to-monoclinic structural transition. Moreover, we have reported new thermoelastic properties of c − Sc2 O3 nanocrystals at simultaneous high-pressure and high-temperature conditions. These findings/results may have significant implications for the design of phase-switching devices and for the exploration of the structural relationship among sesquioxides for their uses in extreme environments.
doi_str_mv 10.1103/PhysRevB.102.214115
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2480796052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480796052</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-4b22e9bff3bfc30f77865d3af3379fcfddeb8ee49ae5faaaa83c15f4531dc0ec3</originalsourceid><addsrcrecordid>eNo9T8tKAzEUDaJg0X6Bmwuup-Yxryy1-IJCReu6ZDI3nZRppiaZgf5B136iX-Kg4t2ccy_nwSXkitEZY1TcvDSH8IrD3YxRPuMsZSw7IROe5jKRMpen_zyj52QawpZSynIqCyon5PjuvBqwtW4DO6t9F6JX1iV73-26iDWMe69j71ULOHRtH23nQLkaYoN-p9r2ALW3AzrYNyogjHYX7I_KOtDwdfyEN81hKcAp12l_CFG1AVSExm4a2HsMofd4Sc7MeMfpH16Q1cP9av6ULJaPz_PbRbKXZUzSinOUlTGiMlpQUxRlntVCGSEKabSpa6xKxFQqzIwapxSaZSbNBKs1RS0uyPVv7PjgR48hrrdd793YuOZpSQuZ04yLb_rbbBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480796052</pqid></control><display><type>article</type><title>Unraveling microstrain-promoted structural evolution and thermally driven phase transition in c − Sc2 O3 nanocrystals at high pressure</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Zou, Yongtao ; Li, Mu ; Zhang, Wei ; Zhou, Cangtao ; Yu, Tony ; Zhuo, Hongbin ; Wang, Yanbin ; Zhao, Yusheng ; Ruan, Shuangchen ; Li, Baosheng</creator><creatorcontrib>Zou, Yongtao ; Li, Mu ; Zhang, Wei ; Zhou, Cangtao ; Yu, Tony ; Zhuo, Hongbin ; Wang, Yanbin ; Zhao, Yusheng ; Ruan, Shuangchen ; Li, Baosheng</creatorcontrib><description>Here, we report an irreversible cubic-to-monoclinic structural transition in cubic c − Sc2 O3 nanocrystals which occur at pressures above ∼ 8.9 GPa upon nonhydrostatic compression in association with a pronounced volume collapse. This phase-transition–induced anomaly is further confirmed by our experimental Raman spectroscopy measurements and theoretical predictions. After annealing, however, this high-pressure monoclinic m − Sc2 O3 phase undergoes a reversible back-transformation to the cubic counterpart at ∼ 1123 K and 9.0 GPa. Our observed transition pressure of ∼ 8.9 GPa for the cubic-to-monoclinic structural evolution is significantly lower than that from the previously diamond-anvil-cell–based hydrostatic x-ray experiments because of the existence of internal microscopic stress and/or high-stress concentration in the specimen caused by grain-to-grain contacts upon nonhydrostatic compression, which promoted the cubic-to-monoclinic structural transition. Moreover, we have reported new thermoelastic properties of c − Sc2 O3 nanocrystals at simultaneous high-pressure and high-temperature conditions. These findings/results may have significant implications for the design of phase-switching devices and for the exploration of the structural relationship among sesquioxides for their uses in extreme environments.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.214115</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Contact stresses ; Diamonds ; Evolution ; Extreme environments ; High temperature ; Microstrain ; Nanocrystals ; Phase transitions ; Raman spectroscopy ; Sesquioxides ; Stress concentration ; Thermoelastic properties ; Transition pressure</subject><ispartof>Physical review. B, 2020-12, Vol.102 (21), p.1</ispartof><rights>Copyright American Physical Society Dec 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zou, Yongtao</creatorcontrib><creatorcontrib>Li, Mu</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhou, Cangtao</creatorcontrib><creatorcontrib>Yu, Tony</creatorcontrib><creatorcontrib>Zhuo, Hongbin</creatorcontrib><creatorcontrib>Wang, Yanbin</creatorcontrib><creatorcontrib>Zhao, Yusheng</creatorcontrib><creatorcontrib>Ruan, Shuangchen</creatorcontrib><creatorcontrib>Li, Baosheng</creatorcontrib><title>Unraveling microstrain-promoted structural evolution and thermally driven phase transition in c − Sc2 O3 nanocrystals at high pressure</title><title>Physical review. B</title><description>Here, we report an irreversible cubic-to-monoclinic structural transition in cubic c − Sc2 O3 nanocrystals which occur at pressures above ∼ 8.9 GPa upon nonhydrostatic compression in association with a pronounced volume collapse. This phase-transition–induced anomaly is further confirmed by our experimental Raman spectroscopy measurements and theoretical predictions. After annealing, however, this high-pressure monoclinic m − Sc2 O3 phase undergoes a reversible back-transformation to the cubic counterpart at ∼ 1123 K and 9.0 GPa. Our observed transition pressure of ∼ 8.9 GPa for the cubic-to-monoclinic structural evolution is significantly lower than that from the previously diamond-anvil-cell–based hydrostatic x-ray experiments because of the existence of internal microscopic stress and/or high-stress concentration in the specimen caused by grain-to-grain contacts upon nonhydrostatic compression, which promoted the cubic-to-monoclinic structural transition. Moreover, we have reported new thermoelastic properties of c − Sc2 O3 nanocrystals at simultaneous high-pressure and high-temperature conditions. These findings/results may have significant implications for the design of phase-switching devices and for the exploration of the structural relationship among sesquioxides for their uses in extreme environments.</description><subject>Contact stresses</subject><subject>Diamonds</subject><subject>Evolution</subject><subject>Extreme environments</subject><subject>High temperature</subject><subject>Microstrain</subject><subject>Nanocrystals</subject><subject>Phase transitions</subject><subject>Raman spectroscopy</subject><subject>Sesquioxides</subject><subject>Stress concentration</subject><subject>Thermoelastic properties</subject><subject>Transition pressure</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9T8tKAzEUDaJg0X6Bmwuup-Yxryy1-IJCReu6ZDI3nZRppiaZgf5B136iX-Kg4t2ccy_nwSXkitEZY1TcvDSH8IrD3YxRPuMsZSw7IROe5jKRMpen_zyj52QawpZSynIqCyon5PjuvBqwtW4DO6t9F6JX1iV73-26iDWMe69j71ULOHRtH23nQLkaYoN-p9r2ALW3AzrYNyogjHYX7I_KOtDwdfyEN81hKcAp12l_CFG1AVSExm4a2HsMofd4Sc7MeMfpH16Q1cP9av6ULJaPz_PbRbKXZUzSinOUlTGiMlpQUxRlntVCGSEKabSpa6xKxFQqzIwapxSaZSbNBKs1RS0uyPVv7PjgR48hrrdd793YuOZpSQuZ04yLb_rbbBQ</recordid><startdate>20201231</startdate><enddate>20201231</enddate><creator>Zou, Yongtao</creator><creator>Li, Mu</creator><creator>Zhang, Wei</creator><creator>Zhou, Cangtao</creator><creator>Yu, Tony</creator><creator>Zhuo, Hongbin</creator><creator>Wang, Yanbin</creator><creator>Zhao, Yusheng</creator><creator>Ruan, Shuangchen</creator><creator>Li, Baosheng</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20201231</creationdate><title>Unraveling microstrain-promoted structural evolution and thermally driven phase transition in c − Sc2 O3 nanocrystals at high pressure</title><author>Zou, Yongtao ; Li, Mu ; Zhang, Wei ; Zhou, Cangtao ; Yu, Tony ; Zhuo, Hongbin ; Wang, Yanbin ; Zhao, Yusheng ; Ruan, Shuangchen ; Li, Baosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-4b22e9bff3bfc30f77865d3af3379fcfddeb8ee49ae5faaaa83c15f4531dc0ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Contact stresses</topic><topic>Diamonds</topic><topic>Evolution</topic><topic>Extreme environments</topic><topic>High temperature</topic><topic>Microstrain</topic><topic>Nanocrystals</topic><topic>Phase transitions</topic><topic>Raman spectroscopy</topic><topic>Sesquioxides</topic><topic>Stress concentration</topic><topic>Thermoelastic properties</topic><topic>Transition pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yongtao</creatorcontrib><creatorcontrib>Li, Mu</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhou, Cangtao</creatorcontrib><creatorcontrib>Yu, Tony</creatorcontrib><creatorcontrib>Zhuo, Hongbin</creatorcontrib><creatorcontrib>Wang, Yanbin</creatorcontrib><creatorcontrib>Zhao, Yusheng</creatorcontrib><creatorcontrib>Ruan, Shuangchen</creatorcontrib><creatorcontrib>Li, Baosheng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Yongtao</au><au>Li, Mu</au><au>Zhang, Wei</au><au>Zhou, Cangtao</au><au>Yu, Tony</au><au>Zhuo, Hongbin</au><au>Wang, Yanbin</au><au>Zhao, Yusheng</au><au>Ruan, Shuangchen</au><au>Li, Baosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling microstrain-promoted structural evolution and thermally driven phase transition in c − Sc2 O3 nanocrystals at high pressure</atitle><jtitle>Physical review. B</jtitle><date>2020-12-31</date><risdate>2020</risdate><volume>102</volume><issue>21</issue><spage>1</spage><pages>1-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Here, we report an irreversible cubic-to-monoclinic structural transition in cubic c − Sc2 O3 nanocrystals which occur at pressures above ∼ 8.9 GPa upon nonhydrostatic compression in association with a pronounced volume collapse. This phase-transition–induced anomaly is further confirmed by our experimental Raman spectroscopy measurements and theoretical predictions. After annealing, however, this high-pressure monoclinic m − Sc2 O3 phase undergoes a reversible back-transformation to the cubic counterpart at ∼ 1123 K and 9.0 GPa. Our observed transition pressure of ∼ 8.9 GPa for the cubic-to-monoclinic structural evolution is significantly lower than that from the previously diamond-anvil-cell–based hydrostatic x-ray experiments because of the existence of internal microscopic stress and/or high-stress concentration in the specimen caused by grain-to-grain contacts upon nonhydrostatic compression, which promoted the cubic-to-monoclinic structural transition. Moreover, we have reported new thermoelastic properties of c − Sc2 O3 nanocrystals at simultaneous high-pressure and high-temperature conditions. These findings/results may have significant implications for the design of phase-switching devices and for the exploration of the structural relationship among sesquioxides for their uses in extreme environments.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.214115</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-12, Vol.102 (21), p.1
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2480796052
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Contact stresses
Diamonds
Evolution
Extreme environments
High temperature
Microstrain
Nanocrystals
Phase transitions
Raman spectroscopy
Sesquioxides
Stress concentration
Thermoelastic properties
Transition pressure
title Unraveling microstrain-promoted structural evolution and thermally driven phase transition in c − Sc2 O3 nanocrystals at high pressure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20microstrain-promoted%20structural%20evolution%20and%20thermally%20driven%20phase%20transition%20in%20c%20%E2%88%92%20Sc2%20O3%20nanocrystals%20at%20high%20pressure&rft.jtitle=Physical%20review.%20B&rft.au=Zou,%20Yongtao&rft.date=2020-12-31&rft.volume=102&rft.issue=21&rft.spage=1&rft.pages=1-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.214115&rft_dat=%3Cproquest%3E2480796052%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p98t-4b22e9bff3bfc30f77865d3af3379fcfddeb8ee49ae5faaaa83c15f4531dc0ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480796052&rft_id=info:pmid/&rfr_iscdi=true