Loading…

Direct writing alginate bioink inside pre-polymers of hydrogels to create patterned vascular networks

We describe a strategy to fabricate a hydrogel-based microvascular construct by direct writing alginate bioink inside the viscous pre-polymer of hydrogels, which acts as a support bath. As the print needle translates through the polymers, the extruded alginate instantaneously forms calcium alginate...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2019-05, Vol.54 (10), p.7883-7892
Main Authors: Wang, Yongkang, Huang, Xiaobo, Shen, Yi, Hang, Ruiqiang, Zhang, Xiangyu, Wang, Yueyue, Yao, Xiaohong, Tang, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe a strategy to fabricate a hydrogel-based microvascular construct by direct writing alginate bioink inside the viscous pre-polymer of hydrogels, which acts as a support bath. As the print needle translates through the polymers, the extruded alginate instantaneously forms calcium alginate hydrogel (Ca-Alg) templates deposited within the bath. This phase change allows the formed templates to be anchored within the pre-polymers, while maintaining their structure. After the printing process, the pre-polymers are solidified to form a mechanically robust hydrogel. Finally, a hydrogel construct with embedded microchannels is generated by liquefying and removing the Ca-Alg templates. Using this method, not only the alginate ink alone can be directly printed within the engineered constructs, but also the size and shape of the formed microchannels are controllable. Furthermore, a confluent endothelial layer for the generation of vascular networks can be constructed by adhering and proliferating endothelial cells on the channel linings. This strategy demonstrates a promising technique for rapid construction of in vitro vasculatures, which would provide a versatile platform for a wide array of applications such as tissue engineering, organ-on-a-chip and drug screening.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-019-03447-2