Loading…
Modulation of quantum transport properties in single-layer phosphorene nanoribbons using planar elastic strains
The influence of uniaxial and biaxial strains on electronic and transport properties of phosphorene nanoribbons (PNRs) is investigated within the tight-binding Green’s function theory by including an iterative procedure. For this purpose, we use tensile and compressive strains and employ the electro...
Saved in:
Published in: | Journal of materials science 2019-05, Vol.54 (10), p.7728-7744 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-a18e3962caa04abcf226190859f7b9be86752dce656088c6e0b28cb7acc694bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-a18e3962caa04abcf226190859f7b9be86752dce656088c6e0b28cb7acc694bb3 |
container_end_page | 7744 |
container_issue | 10 |
container_start_page | 7728 |
container_title | Journal of materials science |
container_volume | 54 |
creator | Naemi, Zahra Jafar Tafreshi, Majid Salami, Nadia Shokri, Aliasghar |
description | The influence of uniaxial and biaxial strains on electronic and transport properties of phosphorene nanoribbons (PNRs) is investigated within the tight-binding Green’s function theory by including an iterative procedure. For this purpose, we use tensile and compressive strains and employ the electronic band structure, effective mass and current–voltage curve, to explore the transport mechanism of PNR devices. Our results based on the band structure show that pseudogap in zigzag PNR (zPNR) is tunable under the strains. Hence, the tunneling transmission is controllable between two edge states of zPNRs. Obviously, we observe that the compressive strains can disturb the electron distributions leading to the induced charge polarization in armchair PNRs (aPNR). Also, in some particular cases there is massive–massless Dirac fermion transition in aPNRs. We found that the p-type zPNR devices can be designed under the compressive strains and the n-type aPNR devices can be modulated under the tensile strains. Our results show that the strains can be used as a way to control and improve the negative differential resistance phenomena in zPNRs. In aPNRs the current and threshold voltage under a finite bias can be changed several times with the uniaxial and biaxial strains. Thus, PNRs can be utilized for the development of flexible electronic and field effect transistor nanodevices. |
doi_str_mv | 10.1007/s10853-019-03400-3 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2480896691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A576563270</galeid><sourcerecordid>A576563270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-a18e3962caa04abcf226190859f7b9be86752dce656088c6e0b28cb7acc694bb3</originalsourceid><addsrcrecordid>eNp9kV9rHSEQxaW00Ns0X6BPQp_6YDLqrrs-htA_gZRC2zyLemdvDXt1oy40374mGwh5KTII8jszxzmEfOBwxgGG88Jh7CUDrhnIDoDJV2TH-0GybgT5muwAhGCiU_wteVfKLQD0g-A7kr6n_TrbGlKkaaJ3q411PdKabSxLypUuOS2Ya8BCQ6QlxMOMbLb3mOnyJ5VWGSPSaGPKwbkUC10fKLrMNtpMcbalBk9LaxlieU_eTHYuePp0n5CbL59_X35j1z--Xl1eXDMvtajM8hGlVsJbC511fhJCcd3-qKfBaYejGnqx96h6BePoFYITo3eD9V7pzjl5Qj5ufZv_uxVLNbdpzbGNNKKtZNRKad6os4062BlNiFNqLn07ezwGnyJOob1f9EObI8UATfDphaAxFf_Wg11LMVe_fr5kxcb6nErJOJklh6PN94aDeUjNbKmZlpp5TM3IJpKbqDQ4HjA_-_6P6h_SkJwS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480896691</pqid></control><display><type>article</type><title>Modulation of quantum transport properties in single-layer phosphorene nanoribbons using planar elastic strains</title><source>Springer Nature</source><creator>Naemi, Zahra ; Jafar Tafreshi, Majid ; Salami, Nadia ; Shokri, Aliasghar</creator><creatorcontrib>Naemi, Zahra ; Jafar Tafreshi, Majid ; Salami, Nadia ; Shokri, Aliasghar</creatorcontrib><description>The influence of uniaxial and biaxial strains on electronic and transport properties of phosphorene nanoribbons (PNRs) is investigated within the tight-binding Green’s function theory by including an iterative procedure. For this purpose, we use tensile and compressive strains and employ the electronic band structure, effective mass and current–voltage curve, to explore the transport mechanism of PNR devices. Our results based on the band structure show that pseudogap in zigzag PNR (zPNR) is tunable under the strains. Hence, the tunneling transmission is controllable between two edge states of zPNRs. Obviously, we observe that the compressive strains can disturb the electron distributions leading to the induced charge polarization in armchair PNRs (aPNR). Also, in some particular cases there is massive–massless Dirac fermion transition in aPNRs. We found that the p-type zPNR devices can be designed under the compressive strains and the n-type aPNR devices can be modulated under the tensile strains. Our results show that the strains can be used as a way to control and improve the negative differential resistance phenomena in zPNRs. In aPNRs the current and threshold voltage under a finite bias can be changed several times with the uniaxial and biaxial strains. Thus, PNRs can be utilized for the development of flexible electronic and field effect transistor nanodevices.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03400-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Band structure of solids ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Compressive properties ; Computation and Theory ; Crystallography and Scattering Methods ; Electrons ; Fermions ; Field effect transistors ; Materials Science ; Nanoribbons ; Nanotechnology devices ; Phosphorene ; Polymer Sciences ; Quantum transport ; Semiconductor devices ; Solid Mechanics ; Stability ; Threshold voltage ; Transport properties</subject><ispartof>Journal of materials science, 2019-05, Vol.54 (10), p.7728-7744</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-a18e3962caa04abcf226190859f7b9be86752dce656088c6e0b28cb7acc694bb3</citedby><cites>FETCH-LOGICAL-c392t-a18e3962caa04abcf226190859f7b9be86752dce656088c6e0b28cb7acc694bb3</cites><orcidid>0000-0003-1976-5989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Naemi, Zahra</creatorcontrib><creatorcontrib>Jafar Tafreshi, Majid</creatorcontrib><creatorcontrib>Salami, Nadia</creatorcontrib><creatorcontrib>Shokri, Aliasghar</creatorcontrib><title>Modulation of quantum transport properties in single-layer phosphorene nanoribbons using planar elastic strains</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The influence of uniaxial and biaxial strains on electronic and transport properties of phosphorene nanoribbons (PNRs) is investigated within the tight-binding Green’s function theory by including an iterative procedure. For this purpose, we use tensile and compressive strains and employ the electronic band structure, effective mass and current–voltage curve, to explore the transport mechanism of PNR devices. Our results based on the band structure show that pseudogap in zigzag PNR (zPNR) is tunable under the strains. Hence, the tunneling transmission is controllable between two edge states of zPNRs. Obviously, we observe that the compressive strains can disturb the electron distributions leading to the induced charge polarization in armchair PNRs (aPNR). Also, in some particular cases there is massive–massless Dirac fermion transition in aPNRs. We found that the p-type zPNR devices can be designed under the compressive strains and the n-type aPNR devices can be modulated under the tensile strains. Our results show that the strains can be used as a way to control and improve the negative differential resistance phenomena in zPNRs. In aPNRs the current and threshold voltage under a finite bias can be changed several times with the uniaxial and biaxial strains. Thus, PNRs can be utilized for the development of flexible electronic and field effect transistor nanodevices.</description><subject>Band structure of solids</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Compressive properties</subject><subject>Computation and Theory</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrons</subject><subject>Fermions</subject><subject>Field effect transistors</subject><subject>Materials Science</subject><subject>Nanoribbons</subject><subject>Nanotechnology devices</subject><subject>Phosphorene</subject><subject>Polymer Sciences</subject><subject>Quantum transport</subject><subject>Semiconductor devices</subject><subject>Solid Mechanics</subject><subject>Stability</subject><subject>Threshold voltage</subject><subject>Transport properties</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kV9rHSEQxaW00Ns0X6BPQp_6YDLqrrs-htA_gZRC2zyLemdvDXt1oy40374mGwh5KTII8jszxzmEfOBwxgGG88Jh7CUDrhnIDoDJV2TH-0GybgT5muwAhGCiU_wteVfKLQD0g-A7kr6n_TrbGlKkaaJ3q411PdKabSxLypUuOS2Ya8BCQ6QlxMOMbLb3mOnyJ5VWGSPSaGPKwbkUC10fKLrMNtpMcbalBk9LaxlieU_eTHYuePp0n5CbL59_X35j1z--Xl1eXDMvtajM8hGlVsJbC511fhJCcd3-qKfBaYejGnqx96h6BePoFYITo3eD9V7pzjl5Qj5ufZv_uxVLNbdpzbGNNKKtZNRKad6os4062BlNiFNqLn07ezwGnyJOob1f9EObI8UATfDphaAxFf_Wg11LMVe_fr5kxcb6nErJOJklh6PN94aDeUjNbKmZlpp5TM3IJpKbqDQ4HjA_-_6P6h_SkJwS</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Naemi, Zahra</creator><creator>Jafar Tafreshi, Majid</creator><creator>Salami, Nadia</creator><creator>Shokri, Aliasghar</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1976-5989</orcidid></search><sort><creationdate>20190501</creationdate><title>Modulation of quantum transport properties in single-layer phosphorene nanoribbons using planar elastic strains</title><author>Naemi, Zahra ; Jafar Tafreshi, Majid ; Salami, Nadia ; Shokri, Aliasghar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-a18e3962caa04abcf226190859f7b9be86752dce656088c6e0b28cb7acc694bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Band structure of solids</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Compressive properties</topic><topic>Computation and Theory</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrons</topic><topic>Fermions</topic><topic>Field effect transistors</topic><topic>Materials Science</topic><topic>Nanoribbons</topic><topic>Nanotechnology devices</topic><topic>Phosphorene</topic><topic>Polymer Sciences</topic><topic>Quantum transport</topic><topic>Semiconductor devices</topic><topic>Solid Mechanics</topic><topic>Stability</topic><topic>Threshold voltage</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naemi, Zahra</creatorcontrib><creatorcontrib>Jafar Tafreshi, Majid</creatorcontrib><creatorcontrib>Salami, Nadia</creatorcontrib><creatorcontrib>Shokri, Aliasghar</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naemi, Zahra</au><au>Jafar Tafreshi, Majid</au><au>Salami, Nadia</au><au>Shokri, Aliasghar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of quantum transport properties in single-layer phosphorene nanoribbons using planar elastic strains</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>54</volume><issue>10</issue><spage>7728</spage><epage>7744</epage><pages>7728-7744</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The influence of uniaxial and biaxial strains on electronic and transport properties of phosphorene nanoribbons (PNRs) is investigated within the tight-binding Green’s function theory by including an iterative procedure. For this purpose, we use tensile and compressive strains and employ the electronic band structure, effective mass and current–voltage curve, to explore the transport mechanism of PNR devices. Our results based on the band structure show that pseudogap in zigzag PNR (zPNR) is tunable under the strains. Hence, the tunneling transmission is controllable between two edge states of zPNRs. Obviously, we observe that the compressive strains can disturb the electron distributions leading to the induced charge polarization in armchair PNRs (aPNR). Also, in some particular cases there is massive–massless Dirac fermion transition in aPNRs. We found that the p-type zPNR devices can be designed under the compressive strains and the n-type aPNR devices can be modulated under the tensile strains. Our results show that the strains can be used as a way to control and improve the negative differential resistance phenomena in zPNRs. In aPNRs the current and threshold voltage under a finite bias can be changed several times with the uniaxial and biaxial strains. Thus, PNRs can be utilized for the development of flexible electronic and field effect transistor nanodevices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03400-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1976-5989</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2019-05, Vol.54 (10), p.7728-7744 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2480896691 |
source | Springer Nature |
subjects | Band structure of solids Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Compressive properties Computation and Theory Crystallography and Scattering Methods Electrons Fermions Field effect transistors Materials Science Nanoribbons Nanotechnology devices Phosphorene Polymer Sciences Quantum transport Semiconductor devices Solid Mechanics Stability Threshold voltage Transport properties |
title | Modulation of quantum transport properties in single-layer phosphorene nanoribbons using planar elastic strains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20quantum%20transport%20properties%20in%20single-layer%20phosphorene%20nanoribbons%20using%20planar%20elastic%20strains&rft.jtitle=Journal%20of%20materials%20science&rft.au=Naemi,%20Zahra&rft.date=2019-05-01&rft.volume=54&rft.issue=10&rft.spage=7728&rft.epage=7744&rft.pages=7728-7744&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03400-3&rft_dat=%3Cgale_proqu%3EA576563270%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-a18e3962caa04abcf226190859f7b9be86752dce656088c6e0b28cb7acc694bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480896691&rft_id=info:pmid/&rft_galeid=A576563270&rfr_iscdi=true |