Loading…

Modulation of quantum transport properties in single-layer phosphorene nanoribbons using planar elastic strains

The influence of uniaxial and biaxial strains on electronic and transport properties of phosphorene nanoribbons (PNRs) is investigated within the tight-binding Green’s function theory by including an iterative procedure. For this purpose, we use tensile and compressive strains and employ the electro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2019-05, Vol.54 (10), p.7728-7744
Main Authors: Naemi, Zahra, Jafar Tafreshi, Majid, Salami, Nadia, Shokri, Aliasghar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-a18e3962caa04abcf226190859f7b9be86752dce656088c6e0b28cb7acc694bb3
cites cdi_FETCH-LOGICAL-c392t-a18e3962caa04abcf226190859f7b9be86752dce656088c6e0b28cb7acc694bb3
container_end_page 7744
container_issue 10
container_start_page 7728
container_title Journal of materials science
container_volume 54
creator Naemi, Zahra
Jafar Tafreshi, Majid
Salami, Nadia
Shokri, Aliasghar
description The influence of uniaxial and biaxial strains on electronic and transport properties of phosphorene nanoribbons (PNRs) is investigated within the tight-binding Green’s function theory by including an iterative procedure. For this purpose, we use tensile and compressive strains and employ the electronic band structure, effective mass and current–voltage curve, to explore the transport mechanism of PNR devices. Our results based on the band structure show that pseudogap in zigzag PNR (zPNR) is tunable under the strains. Hence, the tunneling transmission is controllable between two edge states of zPNRs. Obviously, we observe that the compressive strains can disturb the electron distributions leading to the induced charge polarization in armchair PNRs (aPNR). Also, in some particular cases there is massive–massless Dirac fermion transition in aPNRs. We found that the p-type zPNR devices can be designed under the compressive strains and the n-type aPNR devices can be modulated under the tensile strains. Our results show that the strains can be used as a way to control and improve the negative differential resistance phenomena in zPNRs. In aPNRs the current and threshold voltage under a finite bias can be changed several times with the uniaxial and biaxial strains. Thus, PNRs can be utilized for the development of flexible electronic and field effect transistor nanodevices.
doi_str_mv 10.1007/s10853-019-03400-3
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2480896691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A576563270</galeid><sourcerecordid>A576563270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-a18e3962caa04abcf226190859f7b9be86752dce656088c6e0b28cb7acc694bb3</originalsourceid><addsrcrecordid>eNp9kV9rHSEQxaW00Ns0X6BPQp_6YDLqrrs-htA_gZRC2zyLemdvDXt1oy40374mGwh5KTII8jszxzmEfOBwxgGG88Jh7CUDrhnIDoDJV2TH-0GybgT5muwAhGCiU_wteVfKLQD0g-A7kr6n_TrbGlKkaaJ3q411PdKabSxLypUuOS2Ya8BCQ6QlxMOMbLb3mOnyJ5VWGSPSaGPKwbkUC10fKLrMNtpMcbalBk9LaxlieU_eTHYuePp0n5CbL59_X35j1z--Xl1eXDMvtajM8hGlVsJbC511fhJCcd3-qKfBaYejGnqx96h6BePoFYITo3eD9V7pzjl5Qj5ufZv_uxVLNbdpzbGNNKKtZNRKad6os4062BlNiFNqLn07ezwGnyJOob1f9EObI8UATfDphaAxFf_Wg11LMVe_fr5kxcb6nErJOJklh6PN94aDeUjNbKmZlpp5TM3IJpKbqDQ4HjA_-_6P6h_SkJwS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480896691</pqid></control><display><type>article</type><title>Modulation of quantum transport properties in single-layer phosphorene nanoribbons using planar elastic strains</title><source>Springer Nature</source><creator>Naemi, Zahra ; Jafar Tafreshi, Majid ; Salami, Nadia ; Shokri, Aliasghar</creator><creatorcontrib>Naemi, Zahra ; Jafar Tafreshi, Majid ; Salami, Nadia ; Shokri, Aliasghar</creatorcontrib><description>The influence of uniaxial and biaxial strains on electronic and transport properties of phosphorene nanoribbons (PNRs) is investigated within the tight-binding Green’s function theory by including an iterative procedure. For this purpose, we use tensile and compressive strains and employ the electronic band structure, effective mass and current–voltage curve, to explore the transport mechanism of PNR devices. Our results based on the band structure show that pseudogap in zigzag PNR (zPNR) is tunable under the strains. Hence, the tunneling transmission is controllable between two edge states of zPNRs. Obviously, we observe that the compressive strains can disturb the electron distributions leading to the induced charge polarization in armchair PNRs (aPNR). Also, in some particular cases there is massive–massless Dirac fermion transition in aPNRs. We found that the p-type zPNR devices can be designed under the compressive strains and the n-type aPNR devices can be modulated under the tensile strains. Our results show that the strains can be used as a way to control and improve the negative differential resistance phenomena in zPNRs. In aPNRs the current and threshold voltage under a finite bias can be changed several times with the uniaxial and biaxial strains. Thus, PNRs can be utilized for the development of flexible electronic and field effect transistor nanodevices.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03400-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Band structure of solids ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Compressive properties ; Computation and Theory ; Crystallography and Scattering Methods ; Electrons ; Fermions ; Field effect transistors ; Materials Science ; Nanoribbons ; Nanotechnology devices ; Phosphorene ; Polymer Sciences ; Quantum transport ; Semiconductor devices ; Solid Mechanics ; Stability ; Threshold voltage ; Transport properties</subject><ispartof>Journal of materials science, 2019-05, Vol.54 (10), p.7728-7744</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-a18e3962caa04abcf226190859f7b9be86752dce656088c6e0b28cb7acc694bb3</citedby><cites>FETCH-LOGICAL-c392t-a18e3962caa04abcf226190859f7b9be86752dce656088c6e0b28cb7acc694bb3</cites><orcidid>0000-0003-1976-5989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Naemi, Zahra</creatorcontrib><creatorcontrib>Jafar Tafreshi, Majid</creatorcontrib><creatorcontrib>Salami, Nadia</creatorcontrib><creatorcontrib>Shokri, Aliasghar</creatorcontrib><title>Modulation of quantum transport properties in single-layer phosphorene nanoribbons using planar elastic strains</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The influence of uniaxial and biaxial strains on electronic and transport properties of phosphorene nanoribbons (PNRs) is investigated within the tight-binding Green’s function theory by including an iterative procedure. For this purpose, we use tensile and compressive strains and employ the electronic band structure, effective mass and current–voltage curve, to explore the transport mechanism of PNR devices. Our results based on the band structure show that pseudogap in zigzag PNR (zPNR) is tunable under the strains. Hence, the tunneling transmission is controllable between two edge states of zPNRs. Obviously, we observe that the compressive strains can disturb the electron distributions leading to the induced charge polarization in armchair PNRs (aPNR). Also, in some particular cases there is massive–massless Dirac fermion transition in aPNRs. We found that the p-type zPNR devices can be designed under the compressive strains and the n-type aPNR devices can be modulated under the tensile strains. Our results show that the strains can be used as a way to control and improve the negative differential resistance phenomena in zPNRs. In aPNRs the current and threshold voltage under a finite bias can be changed several times with the uniaxial and biaxial strains. Thus, PNRs can be utilized for the development of flexible electronic and field effect transistor nanodevices.</description><subject>Band structure of solids</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Compressive properties</subject><subject>Computation and Theory</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrons</subject><subject>Fermions</subject><subject>Field effect transistors</subject><subject>Materials Science</subject><subject>Nanoribbons</subject><subject>Nanotechnology devices</subject><subject>Phosphorene</subject><subject>Polymer Sciences</subject><subject>Quantum transport</subject><subject>Semiconductor devices</subject><subject>Solid Mechanics</subject><subject>Stability</subject><subject>Threshold voltage</subject><subject>Transport properties</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kV9rHSEQxaW00Ns0X6BPQp_6YDLqrrs-htA_gZRC2zyLemdvDXt1oy40374mGwh5KTII8jszxzmEfOBwxgGG88Jh7CUDrhnIDoDJV2TH-0GybgT5muwAhGCiU_wteVfKLQD0g-A7kr6n_TrbGlKkaaJ3q411PdKabSxLypUuOS2Ya8BCQ6QlxMOMbLb3mOnyJ5VWGSPSaGPKwbkUC10fKLrMNtpMcbalBk9LaxlieU_eTHYuePp0n5CbL59_X35j1z--Xl1eXDMvtajM8hGlVsJbC511fhJCcd3-qKfBaYejGnqx96h6BePoFYITo3eD9V7pzjl5Qj5ufZv_uxVLNbdpzbGNNKKtZNRKad6os4062BlNiFNqLn07ezwGnyJOob1f9EObI8UATfDphaAxFf_Wg11LMVe_fr5kxcb6nErJOJklh6PN94aDeUjNbKmZlpp5TM3IJpKbqDQ4HjA_-_6P6h_SkJwS</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Naemi, Zahra</creator><creator>Jafar Tafreshi, Majid</creator><creator>Salami, Nadia</creator><creator>Shokri, Aliasghar</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1976-5989</orcidid></search><sort><creationdate>20190501</creationdate><title>Modulation of quantum transport properties in single-layer phosphorene nanoribbons using planar elastic strains</title><author>Naemi, Zahra ; Jafar Tafreshi, Majid ; Salami, Nadia ; Shokri, Aliasghar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-a18e3962caa04abcf226190859f7b9be86752dce656088c6e0b28cb7acc694bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Band structure of solids</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Compressive properties</topic><topic>Computation and Theory</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrons</topic><topic>Fermions</topic><topic>Field effect transistors</topic><topic>Materials Science</topic><topic>Nanoribbons</topic><topic>Nanotechnology devices</topic><topic>Phosphorene</topic><topic>Polymer Sciences</topic><topic>Quantum transport</topic><topic>Semiconductor devices</topic><topic>Solid Mechanics</topic><topic>Stability</topic><topic>Threshold voltage</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naemi, Zahra</creatorcontrib><creatorcontrib>Jafar Tafreshi, Majid</creatorcontrib><creatorcontrib>Salami, Nadia</creatorcontrib><creatorcontrib>Shokri, Aliasghar</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naemi, Zahra</au><au>Jafar Tafreshi, Majid</au><au>Salami, Nadia</au><au>Shokri, Aliasghar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of quantum transport properties in single-layer phosphorene nanoribbons using planar elastic strains</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>54</volume><issue>10</issue><spage>7728</spage><epage>7744</epage><pages>7728-7744</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The influence of uniaxial and biaxial strains on electronic and transport properties of phosphorene nanoribbons (PNRs) is investigated within the tight-binding Green’s function theory by including an iterative procedure. For this purpose, we use tensile and compressive strains and employ the electronic band structure, effective mass and current–voltage curve, to explore the transport mechanism of PNR devices. Our results based on the band structure show that pseudogap in zigzag PNR (zPNR) is tunable under the strains. Hence, the tunneling transmission is controllable between two edge states of zPNRs. Obviously, we observe that the compressive strains can disturb the electron distributions leading to the induced charge polarization in armchair PNRs (aPNR). Also, in some particular cases there is massive–massless Dirac fermion transition in aPNRs. We found that the p-type zPNR devices can be designed under the compressive strains and the n-type aPNR devices can be modulated under the tensile strains. Our results show that the strains can be used as a way to control and improve the negative differential resistance phenomena in zPNRs. In aPNRs the current and threshold voltage under a finite bias can be changed several times with the uniaxial and biaxial strains. Thus, PNRs can be utilized for the development of flexible electronic and field effect transistor nanodevices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03400-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1976-5989</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2019-05, Vol.54 (10), p.7728-7744
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2480896691
source Springer Nature
subjects Band structure of solids
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Compressive properties
Computation and Theory
Crystallography and Scattering Methods
Electrons
Fermions
Field effect transistors
Materials Science
Nanoribbons
Nanotechnology devices
Phosphorene
Polymer Sciences
Quantum transport
Semiconductor devices
Solid Mechanics
Stability
Threshold voltage
Transport properties
title Modulation of quantum transport properties in single-layer phosphorene nanoribbons using planar elastic strains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20quantum%20transport%20properties%20in%20single-layer%20phosphorene%20nanoribbons%20using%20planar%20elastic%20strains&rft.jtitle=Journal%20of%20materials%20science&rft.au=Naemi,%20Zahra&rft.date=2019-05-01&rft.volume=54&rft.issue=10&rft.spage=7728&rft.epage=7744&rft.pages=7728-7744&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03400-3&rft_dat=%3Cgale_proqu%3EA576563270%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-a18e3962caa04abcf226190859f7b9be86752dce656088c6e0b28cb7acc694bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480896691&rft_id=info:pmid/&rft_galeid=A576563270&rfr_iscdi=true