Loading…
Fractional boundary charges with quantized slopes in interacting one- and two-dimensional systems
We study fractional boundary charges (FBCs) for two classes of strongly interacting systems. First, we study strongly interacting nanowires subjected to a periodic potential with a period that is a rational fraction of the Fermi wavelength. For sufficiently strong interactions, the periodic potentia...
Saved in:
Published in: | arXiv.org 2021-08 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Laubscher, Katharina Weber, Clara S Kennes, Dante M Pletyukhov, Mikhail Schoeller, Herbert Loss, Daniel Klinovaja, Jelena |
description | We study fractional boundary charges (FBCs) for two classes of strongly interacting systems. First, we study strongly interacting nanowires subjected to a periodic potential with a period that is a rational fraction of the Fermi wavelength. For sufficiently strong interactions, the periodic potential leads to the opening of a charge density wave gap at the Fermi level. The FBC then depends linearly on the phase offset of the potential with a quantized slope determined by the period. Furthermore, different possible values for the FBC at a fixed phase offset label different degenerate ground states of the system that cannot be connected adiabatically. Next, we turn to the fractional quantum Hall effect (FQHE) at odd filling factors \(\nu=1/(2l+1)\), where \(l\) is an integer. For a Corbino disk threaded by an external flux, we find that the FBC depends linearly on the flux with a quantized slope that is determined by the filling factor. Again, the FBC has \(2l+1\) different branches that cannot be connected adiabatically, reflecting the \((2l+1)\)-fold degeneracy of the ground state. These results allow for several promising and strikingly simple ways to probe strongly interacting phases via boundary charge measurements. |
doi_str_mv | 10.48550/arxiv.2101.10301 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2480949269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480949269</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-c796fe48157d4f3fb1805adc20b9b219e63749a3baf6ca37e9d6e1c27f3fc9f13</originalsourceid><addsrcrecordid>eNotjk1rAjEYhEOhULH-gN4CPcfmc3dzLFLbgtCLd3k3HxpZE91ka-2v71KFgYFh5mEQemJ0Lhul6Av0P-F7zhllc0YFZXdowoVgpJGcP6BZzntKKa9qrpSYIFj2YEpIETrcpiFa6C_Y7KDfuozPoezwaYBYwq-zOHfpOKYhjirufxe3OEVHMESLyzkRGw4u5isuX3Jxh_yI7j102c1uPkXr5dt68UFWX--fi9cVAcU1MbWuvJMNU7WVXviWNVSBNZy2uuVMu0rUUoNowVcGRO20rRwzvB67Rnsmpuj5ij326TS4XDb7NPTjj7zhsqFaal5p8QdKjVhj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480949269</pqid></control><display><type>article</type><title>Fractional boundary charges with quantized slopes in interacting one- and two-dimensional systems</title><source>Access via ProQuest (Open Access)</source><creator>Laubscher, Katharina ; Weber, Clara S ; Kennes, Dante M ; Pletyukhov, Mikhail ; Schoeller, Herbert ; Loss, Daniel ; Klinovaja, Jelena</creator><creatorcontrib>Laubscher, Katharina ; Weber, Clara S ; Kennes, Dante M ; Pletyukhov, Mikhail ; Schoeller, Herbert ; Loss, Daniel ; Klinovaja, Jelena</creatorcontrib><description>We study fractional boundary charges (FBCs) for two classes of strongly interacting systems. First, we study strongly interacting nanowires subjected to a periodic potential with a period that is a rational fraction of the Fermi wavelength. For sufficiently strong interactions, the periodic potential leads to the opening of a charge density wave gap at the Fermi level. The FBC then depends linearly on the phase offset of the potential with a quantized slope determined by the period. Furthermore, different possible values for the FBC at a fixed phase offset label different degenerate ground states of the system that cannot be connected adiabatically. Next, we turn to the fractional quantum Hall effect (FQHE) at odd filling factors \(\nu=1/(2l+1)\), where \(l\) is an integer. For a Corbino disk threaded by an external flux, we find that the FBC depends linearly on the flux with a quantized slope that is determined by the filling factor. Again, the FBC has \(2l+1\) different branches that cannot be connected adiabatically, reflecting the \((2l+1)\)-fold degeneracy of the ground state. These results allow for several promising and strikingly simple ways to probe strongly interacting phases via boundary charge measurements.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2101.10301</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adiabatic flow ; Charge density waves ; Ground state ; Nanowires ; Quantum Hall effect</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2480949269?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Laubscher, Katharina</creatorcontrib><creatorcontrib>Weber, Clara S</creatorcontrib><creatorcontrib>Kennes, Dante M</creatorcontrib><creatorcontrib>Pletyukhov, Mikhail</creatorcontrib><creatorcontrib>Schoeller, Herbert</creatorcontrib><creatorcontrib>Loss, Daniel</creatorcontrib><creatorcontrib>Klinovaja, Jelena</creatorcontrib><title>Fractional boundary charges with quantized slopes in interacting one- and two-dimensional systems</title><title>arXiv.org</title><description>We study fractional boundary charges (FBCs) for two classes of strongly interacting systems. First, we study strongly interacting nanowires subjected to a periodic potential with a period that is a rational fraction of the Fermi wavelength. For sufficiently strong interactions, the periodic potential leads to the opening of a charge density wave gap at the Fermi level. The FBC then depends linearly on the phase offset of the potential with a quantized slope determined by the period. Furthermore, different possible values for the FBC at a fixed phase offset label different degenerate ground states of the system that cannot be connected adiabatically. Next, we turn to the fractional quantum Hall effect (FQHE) at odd filling factors \(\nu=1/(2l+1)\), where \(l\) is an integer. For a Corbino disk threaded by an external flux, we find that the FBC depends linearly on the flux with a quantized slope that is determined by the filling factor. Again, the FBC has \(2l+1\) different branches that cannot be connected adiabatically, reflecting the \((2l+1)\)-fold degeneracy of the ground state. These results allow for several promising and strikingly simple ways to probe strongly interacting phases via boundary charge measurements.</description><subject>Adiabatic flow</subject><subject>Charge density waves</subject><subject>Ground state</subject><subject>Nanowires</subject><subject>Quantum Hall effect</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1rAjEYhEOhULH-gN4CPcfmc3dzLFLbgtCLd3k3HxpZE91ka-2v71KFgYFh5mEQemJ0Lhul6Av0P-F7zhllc0YFZXdowoVgpJGcP6BZzntKKa9qrpSYIFj2YEpIETrcpiFa6C_Y7KDfuozPoezwaYBYwq-zOHfpOKYhjirufxe3OEVHMESLyzkRGw4u5isuX3Jxh_yI7j102c1uPkXr5dt68UFWX--fi9cVAcU1MbWuvJMNU7WVXviWNVSBNZy2uuVMu0rUUoNowVcGRO20rRwzvB67Rnsmpuj5ij326TS4XDb7NPTjj7zhsqFaal5p8QdKjVhj</recordid><startdate>20210811</startdate><enddate>20210811</enddate><creator>Laubscher, Katharina</creator><creator>Weber, Clara S</creator><creator>Kennes, Dante M</creator><creator>Pletyukhov, Mikhail</creator><creator>Schoeller, Herbert</creator><creator>Loss, Daniel</creator><creator>Klinovaja, Jelena</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210811</creationdate><title>Fractional boundary charges with quantized slopes in interacting one- and two-dimensional systems</title><author>Laubscher, Katharina ; Weber, Clara S ; Kennes, Dante M ; Pletyukhov, Mikhail ; Schoeller, Herbert ; Loss, Daniel ; Klinovaja, Jelena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-c796fe48157d4f3fb1805adc20b9b219e63749a3baf6ca37e9d6e1c27f3fc9f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adiabatic flow</topic><topic>Charge density waves</topic><topic>Ground state</topic><topic>Nanowires</topic><topic>Quantum Hall effect</topic><toplevel>online_resources</toplevel><creatorcontrib>Laubscher, Katharina</creatorcontrib><creatorcontrib>Weber, Clara S</creatorcontrib><creatorcontrib>Kennes, Dante M</creatorcontrib><creatorcontrib>Pletyukhov, Mikhail</creatorcontrib><creatorcontrib>Schoeller, Herbert</creatorcontrib><creatorcontrib>Loss, Daniel</creatorcontrib><creatorcontrib>Klinovaja, Jelena</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laubscher, Katharina</au><au>Weber, Clara S</au><au>Kennes, Dante M</au><au>Pletyukhov, Mikhail</au><au>Schoeller, Herbert</au><au>Loss, Daniel</au><au>Klinovaja, Jelena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional boundary charges with quantized slopes in interacting one- and two-dimensional systems</atitle><jtitle>arXiv.org</jtitle><date>2021-08-11</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study fractional boundary charges (FBCs) for two classes of strongly interacting systems. First, we study strongly interacting nanowires subjected to a periodic potential with a period that is a rational fraction of the Fermi wavelength. For sufficiently strong interactions, the periodic potential leads to the opening of a charge density wave gap at the Fermi level. The FBC then depends linearly on the phase offset of the potential with a quantized slope determined by the period. Furthermore, different possible values for the FBC at a fixed phase offset label different degenerate ground states of the system that cannot be connected adiabatically. Next, we turn to the fractional quantum Hall effect (FQHE) at odd filling factors \(\nu=1/(2l+1)\), where \(l\) is an integer. For a Corbino disk threaded by an external flux, we find that the FBC depends linearly on the flux with a quantized slope that is determined by the filling factor. Again, the FBC has \(2l+1\) different branches that cannot be connected adiabatically, reflecting the \((2l+1)\)-fold degeneracy of the ground state. These results allow for several promising and strikingly simple ways to probe strongly interacting phases via boundary charge measurements.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2101.10301</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2480949269 |
source | Access via ProQuest (Open Access) |
subjects | Adiabatic flow Charge density waves Ground state Nanowires Quantum Hall effect |
title | Fractional boundary charges with quantized slopes in interacting one- and two-dimensional systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20boundary%20charges%20with%20quantized%20slopes%20in%20interacting%20one-%20and%20two-dimensional%20systems&rft.jtitle=arXiv.org&rft.au=Laubscher,%20Katharina&rft.date=2021-08-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2101.10301&rft_dat=%3Cproquest%3E2480949269%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-c796fe48157d4f3fb1805adc20b9b219e63749a3baf6ca37e9d6e1c27f3fc9f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480949269&rft_id=info:pmid/&rfr_iscdi=true |