Loading…

The effect of chain polydispersity on the elasticity of disordered polymer networks

Due to their unique structural and mechanical properties, randomly-crosslinked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are controlled by the physical details of the network (\t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-01
Main Authors: Sorichetti, Valerio, Ninarello, Andrea, Ruiz-Franco, José M, Hugouvieux, Virginie, Kob, Walter, Zaccarelli, Emanuela, Rovigatti, Lorenzo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sorichetti, Valerio
Ninarello, Andrea
Ruiz-Franco, José M
Hugouvieux, Virginie
Kob, Walter
Zaccarelli, Emanuela
Rovigatti, Lorenzo
description Due to their unique structural and mechanical properties, randomly-crosslinked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are controlled by the physical details of the network (\textit{e.g.} chain-length and end-to-end distributions), we generate disordered phantom networks with different crosslinker concentrations \(C\) and initial density \(\rho_{\rm init}\) and evaluate their elastic properties. We find that the shear modulus computed at the same strand concentration for networks with the same \(C\), which determines the number of chains and the chain-length distribution, depends strongly on the preparation protocol of the network, here controlled by \(\rho_{\rm init}\). We rationalise this dependence by employing a generic stress-strain relation for polymer networks that does not rely on the specific form of the polymer end-to-end distance distribution. We find that the shear modulus of the networks is a non-monotonic function of the density of elastically-active strands, and that this behaviour has a purely entropic origin. Our results show that if short chains are abundant, as it is always the case for randomly-crosslinked polymer networks, the knowledge of the exact chain conformation distribution is essential for predicting correctly the elastic properties. Finally, we apply our theoretical approach to published experimental data, qualitatively confirming our interpretations.
doi_str_mv 10.48550/arxiv.2101.09814
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2480952405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480952405</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-4b03c162ec261510ca8d0c87b07a6751469a6152d75ed76fb25a06ccab49bbb03</originalsourceid><addsrcrecordid>eNotjctOwzAURC0kJKrSD2BniXXC9Y0fyRJVvKRKLMi-cpwbNSXEwXaB_j2hZTXSzJkZxm4E5LJUCu5s-Om_chQgcqhKIS_YAotCZKVEvGKrGPcAgNqgUsWCvdU74tR15BL3HXc724988sOx7eNEIfbpyP3I0x812Jh6d3I6Puc-tBSoPeEfFPhI6duH93jNLjs7RFr965LVjw_1-jnbvD69rO83mVWoMtlA4YRGcqiFEuBs2YIrTQPGaqOE1JWdA2yNotborkFlQTtnG1k1zVxestvz7BT854Fi2u79IYzz4xZlCZVCCar4BXbVUjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480952405</pqid></control><display><type>article</type><title>The effect of chain polydispersity on the elasticity of disordered polymer networks</title><source>Publicly Available Content Database</source><creator>Sorichetti, Valerio ; Ninarello, Andrea ; Ruiz-Franco, José M ; Hugouvieux, Virginie ; Kob, Walter ; Zaccarelli, Emanuela ; Rovigatti, Lorenzo</creator><creatorcontrib>Sorichetti, Valerio ; Ninarello, Andrea ; Ruiz-Franco, José M ; Hugouvieux, Virginie ; Kob, Walter ; Zaccarelli, Emanuela ; Rovigatti, Lorenzo</creatorcontrib><description>Due to their unique structural and mechanical properties, randomly-crosslinked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are controlled by the physical details of the network (\textit{e.g.} chain-length and end-to-end distributions), we generate disordered phantom networks with different crosslinker concentrations \(C\) and initial density \(\rho_{\rm init}\) and evaluate their elastic properties. We find that the shear modulus computed at the same strand concentration for networks with the same \(C\), which determines the number of chains and the chain-length distribution, depends strongly on the preparation protocol of the network, here controlled by \(\rho_{\rm init}\). We rationalise this dependence by employing a generic stress-strain relation for polymer networks that does not rely on the specific form of the polymer end-to-end distance distribution. We find that the shear modulus of the networks is a non-monotonic function of the density of elastically-active strands, and that this behaviour has a purely entropic origin. Our results show that if short chains are abundant, as it is always the case for randomly-crosslinked polymer networks, the knowledge of the exact chain conformation distribution is essential for predicting correctly the elastic properties. Finally, we apply our theoretical approach to published experimental data, qualitatively confirming our interpretations.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2101.09814</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cellular communication ; Crosslinking ; Density ; Elastic properties ; Mechanical properties ; Modulus of elasticity ; Molecular conformation ; Networks ; Polydispersity ; Polymers ; Shear modulus ; Stress-strain relationships</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2480952405?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Sorichetti, Valerio</creatorcontrib><creatorcontrib>Ninarello, Andrea</creatorcontrib><creatorcontrib>Ruiz-Franco, José M</creatorcontrib><creatorcontrib>Hugouvieux, Virginie</creatorcontrib><creatorcontrib>Kob, Walter</creatorcontrib><creatorcontrib>Zaccarelli, Emanuela</creatorcontrib><creatorcontrib>Rovigatti, Lorenzo</creatorcontrib><title>The effect of chain polydispersity on the elasticity of disordered polymer networks</title><title>arXiv.org</title><description>Due to their unique structural and mechanical properties, randomly-crosslinked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are controlled by the physical details of the network (\textit{e.g.} chain-length and end-to-end distributions), we generate disordered phantom networks with different crosslinker concentrations \(C\) and initial density \(\rho_{\rm init}\) and evaluate their elastic properties. We find that the shear modulus computed at the same strand concentration for networks with the same \(C\), which determines the number of chains and the chain-length distribution, depends strongly on the preparation protocol of the network, here controlled by \(\rho_{\rm init}\). We rationalise this dependence by employing a generic stress-strain relation for polymer networks that does not rely on the specific form of the polymer end-to-end distance distribution. We find that the shear modulus of the networks is a non-monotonic function of the density of elastically-active strands, and that this behaviour has a purely entropic origin. Our results show that if short chains are abundant, as it is always the case for randomly-crosslinked polymer networks, the knowledge of the exact chain conformation distribution is essential for predicting correctly the elastic properties. Finally, we apply our theoretical approach to published experimental data, qualitatively confirming our interpretations.</description><subject>Cellular communication</subject><subject>Crosslinking</subject><subject>Density</subject><subject>Elastic properties</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Molecular conformation</subject><subject>Networks</subject><subject>Polydispersity</subject><subject>Polymers</subject><subject>Shear modulus</subject><subject>Stress-strain relationships</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctOwzAURC0kJKrSD2BniXXC9Y0fyRJVvKRKLMi-cpwbNSXEwXaB_j2hZTXSzJkZxm4E5LJUCu5s-Om_chQgcqhKIS_YAotCZKVEvGKrGPcAgNqgUsWCvdU74tR15BL3HXc724988sOx7eNEIfbpyP3I0x812Jh6d3I6Puc-tBSoPeEfFPhI6duH93jNLjs7RFr965LVjw_1-jnbvD69rO83mVWoMtlA4YRGcqiFEuBs2YIrTQPGaqOE1JWdA2yNotborkFlQTtnG1k1zVxestvz7BT854Fi2u79IYzz4xZlCZVCCar4BXbVUjc</recordid><startdate>20210124</startdate><enddate>20210124</enddate><creator>Sorichetti, Valerio</creator><creator>Ninarello, Andrea</creator><creator>Ruiz-Franco, José M</creator><creator>Hugouvieux, Virginie</creator><creator>Kob, Walter</creator><creator>Zaccarelli, Emanuela</creator><creator>Rovigatti, Lorenzo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210124</creationdate><title>The effect of chain polydispersity on the elasticity of disordered polymer networks</title><author>Sorichetti, Valerio ; Ninarello, Andrea ; Ruiz-Franco, José M ; Hugouvieux, Virginie ; Kob, Walter ; Zaccarelli, Emanuela ; Rovigatti, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-4b03c162ec261510ca8d0c87b07a6751469a6152d75ed76fb25a06ccab49bbb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cellular communication</topic><topic>Crosslinking</topic><topic>Density</topic><topic>Elastic properties</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Molecular conformation</topic><topic>Networks</topic><topic>Polydispersity</topic><topic>Polymers</topic><topic>Shear modulus</topic><topic>Stress-strain relationships</topic><toplevel>online_resources</toplevel><creatorcontrib>Sorichetti, Valerio</creatorcontrib><creatorcontrib>Ninarello, Andrea</creatorcontrib><creatorcontrib>Ruiz-Franco, José M</creatorcontrib><creatorcontrib>Hugouvieux, Virginie</creatorcontrib><creatorcontrib>Kob, Walter</creatorcontrib><creatorcontrib>Zaccarelli, Emanuela</creatorcontrib><creatorcontrib>Rovigatti, Lorenzo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorichetti, Valerio</au><au>Ninarello, Andrea</au><au>Ruiz-Franco, José M</au><au>Hugouvieux, Virginie</au><au>Kob, Walter</au><au>Zaccarelli, Emanuela</au><au>Rovigatti, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of chain polydispersity on the elasticity of disordered polymer networks</atitle><jtitle>arXiv.org</jtitle><date>2021-01-24</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Due to their unique structural and mechanical properties, randomly-crosslinked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are controlled by the physical details of the network (\textit{e.g.} chain-length and end-to-end distributions), we generate disordered phantom networks with different crosslinker concentrations \(C\) and initial density \(\rho_{\rm init}\) and evaluate their elastic properties. We find that the shear modulus computed at the same strand concentration for networks with the same \(C\), which determines the number of chains and the chain-length distribution, depends strongly on the preparation protocol of the network, here controlled by \(\rho_{\rm init}\). We rationalise this dependence by employing a generic stress-strain relation for polymer networks that does not rely on the specific form of the polymer end-to-end distance distribution. We find that the shear modulus of the networks is a non-monotonic function of the density of elastically-active strands, and that this behaviour has a purely entropic origin. Our results show that if short chains are abundant, as it is always the case for randomly-crosslinked polymer networks, the knowledge of the exact chain conformation distribution is essential for predicting correctly the elastic properties. Finally, we apply our theoretical approach to published experimental data, qualitatively confirming our interpretations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2101.09814</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2480952405
source Publicly Available Content Database
subjects Cellular communication
Crosslinking
Density
Elastic properties
Mechanical properties
Modulus of elasticity
Molecular conformation
Networks
Polydispersity
Polymers
Shear modulus
Stress-strain relationships
title The effect of chain polydispersity on the elasticity of disordered polymer networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20chain%20polydispersity%20on%20the%20elasticity%20of%20disordered%20polymer%20networks&rft.jtitle=arXiv.org&rft.au=Sorichetti,%20Valerio&rft.date=2021-01-24&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2101.09814&rft_dat=%3Cproquest%3E2480952405%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-4b03c162ec261510ca8d0c87b07a6751469a6152d75ed76fb25a06ccab49bbb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480952405&rft_id=info:pmid/&rfr_iscdi=true