Loading…
Experimental and density functional theory studies on hydroxymethylation of phenylboronic acids with paraformaldehyde over a RhPPh3 catalyst
The synthesis of benzyl alcohols (BAs) is highly vital for their wide applications in organic synthesis and pharmaceuticals. Herein, BAs was efficiently synthesized via hydroxymethylation of phenylboronic acids (PBAs) and paraformaldehyde over a simple RhPPh3 catalyst combined with an inorganic bas...
Saved in:
Published in: | Applied organometallic chemistry 2021-02, Vol.35 (2), p.n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The synthesis of benzyl alcohols (BAs) is highly vital for their wide applications in organic synthesis and pharmaceuticals. Herein, BAs was efficiently synthesized via hydroxymethylation of phenylboronic acids (PBAs) and paraformaldehyde over a simple RhPPh3 catalyst combined with an inorganic base (NaOH). A variety of BAs with the groups of CH3−, CH3O−, Cl−, Br−, and so on were obtained with moderate to good yields, indicating that the protocol had a good universality. Density functional theory (DFT) calculations proposed the Hayashi‐type arylation mechanism involved the arylation step of PBA and Rh(OH)(PPh3)2 catalyst to form Rh(I)‐bound aryl intermediates and the hydrolysis step of Rh(I)‐bound aryl intermediates and HCHO to generate BA product (the rate‐determining step). The present route provides a valuable and direct method for the synthesis of BAs and expands the application range of paraformaldehyde.
Hydroxymethylation of phenylboronic acids and paraformaldehyde to benzyl alcohols were achieved over a simple RhCl3–PPh3–NaOH catalytic system. DFT calculations proposed the Hayashi‐type arylation mechanism involved the arylation step of PBA and Rh(OH)(PPh3)2 catalyst to form Rh(I)‐bound aryl intermediates and the hydrolysis step of Rh(I)‐bound aryl intermediates and HCHO to generate benzyl alcohol. |
---|---|
ISSN: | 0268-2605 1099-0739 |
DOI: | 10.1002/aoc.6104 |