Loading…
Autonomous Vehicle-to-Grid Design for Provision of Frequency Control Ancillary Service and Distribution Voltage Regulation
We develop a system-level design for the provision of Ancillary Service (AS) for control of electric power grids by in-vehicle batteries, suitably applied to Electric Vehicles (EVs) operated in a sharing service. An architecture for cooperation between transportation and energy management systems is...
Saved in:
Published in: | arXiv.org 2022-02 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We develop a system-level design for the provision of Ancillary Service (AS) for control of electric power grids by in-vehicle batteries, suitably applied to Electric Vehicles (EVs) operated in a sharing service. An architecture for cooperation between transportation and energy management systems is introduced that enables us to design an autonomous Vehicle-to-Grid (V2G) for the provision of multi-objective AS: primary frequency control in a transmission grid and voltage amplitude regulation in a distribution grid connected to EVs. The design is based on the ordinary differential equation model of distribution voltage, which has been recently introduced as a new physics-based model, and is utilized in this paper for assessing and regulating the impact of spatiotemporal charging/charging of a large population of EVs to a distribution grid. Effectiveness of the autonomous V2G design is evaluated with numerical simulations of realistic models for transmission and distribution grids with synthetic operation data on EVs in a sharing service. In addition, we present a hardware-in-the-loop test for evaluating its feasibility in a situation where inevitable latency is involved due to power, control, and communication equipments. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2101.10518 |