Loading…

Ranking dispatching rules in multi-objective dynamic flow shop scheduling: a multi-faceted perspective

In this paper, we present a multi-faceted approach for ranking dispatching rules (DRs) in multi-objective dynamic flow shop scheduling systems using data envelopment analysis (DEA). The merits of the proposed DEA-based approach stem in its ability to (1) integrate explicitly, under the same DEA fram...

Full description

Saved in:
Bibliographic Details
Published in:International journal of production research 2021-01, Vol.59 (2), p.388-411
Main Authors: Oukil, Amar, El-Bouri, Ahmed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we present a multi-faceted approach for ranking dispatching rules (DRs) in multi-objective dynamic flow shop scheduling systems using data envelopment analysis (DEA). The merits of the proposed DEA-based approach stem in its ability to (1) integrate explicitly, under the same DEA framework, desirable and undesirable performance criteria of DRs without a priori normalisation or aggregation; (2) guarantee that the best DR preserves its benchmarking status regardless of the production scenario; (3) circumvent potential occurrence of multiple efficient DRs through embedding ordered weighted averaging (OWA) under DEA cross evaluation to produce aggregate ranking scores for the DRs. The evaluation of the new ranking approach is conducted using 18 data instances of 20 DRs each. The results reveal that, whatever the OWA optimism level, the preferred DR shifts away from the Shortest Processing Time (SPT) rule to the Cost Over Time (COVERT) rule as due-date tightness becomes relaxed, which appears consistent with known performance expectations of these DRs under such settings. To demonstrate a possible implementation of these results to support decision making in operations scheduling, we present a basic adaptive rule that switches automatically between the preferred rules based on real-time due-date tightness and machine utilisation levels.
ISSN:0020-7543
1366-588X
DOI:10.1080/00207543.2019.1696487