Loading…
Corrosion properties of β-Ta alloyed Ti6Al4V by double-glow plasma surface alloying technique
To improve the corrosion resistance of biomedical titanium alloys, Ta-modified layer was prepared on Ti6Al4V substrate by double-glow plasma surface alloying technique (DGPSAT) at 750 °C. The effects of alloying time of Ta coating on the microstructure, film cohesion strength, as well as the electro...
Saved in:
Published in: | Journal of materials science 2021-04, Vol.56 (10), p.6487-6498 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To improve the corrosion resistance of biomedical titanium alloys, Ta-modified layer was prepared on Ti6Al4V substrate by double-glow plasma surface alloying technique (DGPSAT) at 750 °C. The effects of alloying time of Ta coating on the microstructure, film cohesion strength, as well as the electrochemical corrosion property had been investigated. Results showed that there were mainly β-Ta phase formed at 750 °C, the crystal grew bigger without phase transition and the layer thickness increases with the prolongation of alloying time. However, the cohesion strength and corrosion resistance of the film increase first and then decrease with the prolonging alloying time. In particular, the sample with alloying time of 30 min maintains the best cohesion strength and corrosion resistance. These are attributed to the following factors: a denser and more homogeneous coating with high cohesion strength formed on the substrate, higher positive E
corr
and lower I
corr
in phosphate buffered saline (PBS) solution. Both of these accelerate the formation of tantalum oxides protective layers on metal surface and thus maintain the excellent properties. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-020-05626-y |