Loading…

Application of machine learning algorithms in MBR simulation under big data platform

Membrane bioreactors (MBRs) are a sewage treatment process that combines membrane separation with bioreactor technology. It has great advantages in sewage treatment. Membrane fouling hinders MBR process development, however. Studies have shown that the degree of membrane fouling can be judged using...

Full description

Saved in:
Bibliographic Details
Published in:Water practice and technology 2020-12, Vol.15 (4), p.1238-1247
Main Authors: Li, Weiwei, Li, Chunqing, Wang, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Membrane bioreactors (MBRs) are a sewage treatment process that combines membrane separation with bioreactor technology. It has great advantages in sewage treatment. Membrane fouling hinders MBR process development, however. Studies have shown that the degree of membrane fouling can be judged using the membrane flux rate. In this study, principal component analysis was used to extract the main factors affecting membrane fouling, then the random forest algorithm on the Hadoop big data platform was used to establish an MBR membrane flux prediction model, which was tested. In order to verify the model's effectiveness, BP neural network and SVM support vector machine models were established using the same experimental data. The experimental results from the different models were compared, and the results showed that the random forest algorithm gave the best MBR membrane flux predictions.
ISSN:1751-231X
1751-231X
DOI:10.2166/wpt.2020.095