Loading…
i Worksafe: Towards Healthy Workplaces During COVID-19 With an Intelligent Phealth App for Industrial Settings
The recent outbreak of the novel Coronavirus Disease (COVID-19) has given rise to diverse health issues due to its high transmission rate and limited treatment options. Almost the whole world, at some point of time, was placed in lock-down in an attempt to stop the spread of the virus, with resultin...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.13814-13828 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recent outbreak of the novel Coronavirus Disease (COVID-19) has given rise to diverse health issues due to its high transmission rate and limited treatment options. Almost the whole world, at some point of time, was placed in lock-down in an attempt to stop the spread of the virus, with resulting psychological and economic sequela. As countries start to ease lock-down measures and reopen industries, ensuring a healthy workplace for employees has become imperative. Thus, this paper presents a mobile app-based intelligent portable healthcare (pHealth) tool, called [Formula Omitted]WorkSafe, to assist industries in detecting possible suspects for COVID-19 infection among their employees who may need primary care. Developed mainly for low-end Android devices, the [Formula Omitted]WorkSafe app hosts a fuzzy neural network model that integrates data of employees’ health status from the industry’s database, proximity and contact tracing data from the mobile devices, and user-reported COVID-19 self-test data. Using the built-in Bluetooth low energy sensing technology and K Nearest Neighbor and K-means techniques, the app is capable of tracking users’ proximity and trace contact with other employees. Additionally, it uses a logistic regression model to calculate the COVID-19 self-test score and a Bayesian Decision Tree model for checking real-time health condition from an intelligent e-health platform for further clinical attention of the employees. Rolled out in an apparel factory on 12 employees as a test case, the pHealth tool generates an alert to maintain social distancing among employees inside the industry. In addition, the app helps employees to estimate risk with possible COVID-19 infection based on the collected data and found that the score is effective in estimating personal health condition of the app user. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3050193 |