Loading…

Photoelectronic mapping of the spin–orbit interaction of intense light fields

The interaction between a quantum particle’s spin angular momentum 1 and its orbital angular momentum 2 is ubiquitous in nature. In optics, the spin–orbit optical phenomenon is closely related with the light–matter interaction 3 and has been of great interest 4 , 5 . With the development of laser te...

Full description

Saved in:
Bibliographic Details
Published in:Nature photonics 2021-02, Vol.15 (2), p.115-120
Main Authors: Fang, Yiqi, Han, Meng, Ge, Peipei, Guo, Zhenning, Yu, Xiaoyang, Deng, Yongkai, Wu, Chengyin, Gong, Qihuang, Liu, Yunquan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-ba2138c3cb1766be074675153081ac81961c66c86061ef9485764db9f708dcdd3
cites cdi_FETCH-LOGICAL-c319t-ba2138c3cb1766be074675153081ac81961c66c86061ef9485764db9f708dcdd3
container_end_page 120
container_issue 2
container_start_page 115
container_title Nature photonics
container_volume 15
creator Fang, Yiqi
Han, Meng
Ge, Peipei
Guo, Zhenning
Yu, Xiaoyang
Deng, Yongkai
Wu, Chengyin
Gong, Qihuang
Liu, Yunquan
description The interaction between a quantum particle’s spin angular momentum 1 and its orbital angular momentum 2 is ubiquitous in nature. In optics, the spin–orbit optical phenomenon is closely related with the light–matter interaction 3 and has been of great interest 4 , 5 . With the development of laser technology 6 , the high-power and ultrafast light sources now serve as a crucial tool in revealing the behaviour of matter under extreme conditions. A comprehensive knowledge of the spin–orbit interaction for intense light is of utmost importance. Here, we report the in situ modulation and visualization of the optical orbital-to-spin conversion in the strong-field regime. We show that, through manipulating the morphology of femtosecond cylindrical vector vortex pulses 7 by a slit, the photon’s orbital angular momentum can be controllably transformed into spin after focusing. By employing a strong-field ionization experiment, the orbital-to-spin conversion can be imaged and measured through the photoelectron momentum distributions. Such detection and consequent control of the spin–orbit dynamics of intense laser fields has implications for controlling photoelectron holography and coherent extreme-ultraviolet radiation 8 . Sculpting and focusing femtosecond cylindrical vector vortex pulses by a slit allows the controllable transformation of the photon’s orbital angular momentum into spin angular momentum, which can be characterized in situ by a strong-field ionization experiment.
doi_str_mv 10.1038/s41566-020-00709-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2483413973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483413973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ba2138c3cb1766be074675153081ac81961c66c86061ef9485764db9f708dcdd3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyWmA127PhnRBVQpEplgNlKHKd1ldrBdgc23oE35ElICIKN6d6je8650gfAJcHXBFN5kxgpOUe4wAhjgRWiR2BGBFOISUWPf3dZnoKzlHYYl1QVxQysn7YhB9tZk2PwzsB91ffOb2BoYd5amAbx-f4RYu0ydD7bWJnsgh_vo_TJws5tthm2znZNOgcnbdUle_Ez5-Dl_u55sUSr9cPj4naFDCUqo7oqCJWGmpoIzmuLBeOiJCXFklRGEsWJ4dxIjjmxrWKyFJw1tWoFlo1pGjoHV1NvH8Prwaasd-EQ_fBSF0xSRqgSdHAVk8vEkFK0re6j21fxTROsR3B6AqcHcPobnB5DdAqlwew3Nv5V_5P6AuuhcX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483413973</pqid></control><display><type>article</type><title>Photoelectronic mapping of the spin–orbit interaction of intense light fields</title><source>Nature.com</source><creator>Fang, Yiqi ; Han, Meng ; Ge, Peipei ; Guo, Zhenning ; Yu, Xiaoyang ; Deng, Yongkai ; Wu, Chengyin ; Gong, Qihuang ; Liu, Yunquan</creator><creatorcontrib>Fang, Yiqi ; Han, Meng ; Ge, Peipei ; Guo, Zhenning ; Yu, Xiaoyang ; Deng, Yongkai ; Wu, Chengyin ; Gong, Qihuang ; Liu, Yunquan</creatorcontrib><description>The interaction between a quantum particle’s spin angular momentum 1 and its orbital angular momentum 2 is ubiquitous in nature. In optics, the spin–orbit optical phenomenon is closely related with the light–matter interaction 3 and has been of great interest 4 , 5 . With the development of laser technology 6 , the high-power and ultrafast light sources now serve as a crucial tool in revealing the behaviour of matter under extreme conditions. A comprehensive knowledge of the spin–orbit interaction for intense light is of utmost importance. Here, we report the in situ modulation and visualization of the optical orbital-to-spin conversion in the strong-field regime. We show that, through manipulating the morphology of femtosecond cylindrical vector vortex pulses 7 by a slit, the photon’s orbital angular momentum can be controllably transformed into spin after focusing. By employing a strong-field ionization experiment, the orbital-to-spin conversion can be imaged and measured through the photoelectron momentum distributions. Such detection and consequent control of the spin–orbit dynamics of intense laser fields has implications for controlling photoelectron holography and coherent extreme-ultraviolet radiation 8 . Sculpting and focusing femtosecond cylindrical vector vortex pulses by a slit allows the controllable transformation of the photon’s orbital angular momentum into spin angular momentum, which can be characterized in situ by a strong-field ionization experiment.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-020-00709-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/122 ; 639/624/1107/1110 ; 639/624/400/584 ; 639/766/36 ; 639/766/400/1100 ; Angular momentum ; Applied and Technical Physics ; Conversion ; Electric fields ; Experiments ; Femtosecond pulses ; Field ionization ; Focusing ; Holography ; Ionization ; Lasers ; Letter ; Light ; Light sources ; Morphology ; Optics ; Orbital mechanics ; Particle spin ; Photoelectrons ; Photonics ; Photons ; Physics ; Physics and Astronomy ; Quantum Physics ; Spin dynamics ; Stability ; Vortices</subject><ispartof>Nature photonics, 2021-02, Vol.15 (2), p.115-120</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ba2138c3cb1766be074675153081ac81961c66c86061ef9485764db9f708dcdd3</citedby><cites>FETCH-LOGICAL-c319t-ba2138c3cb1766be074675153081ac81961c66c86061ef9485764db9f708dcdd3</cites><orcidid>0000-0001-6952-6009 ; 0000-0003-1137-7236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fang, Yiqi</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Ge, Peipei</creatorcontrib><creatorcontrib>Guo, Zhenning</creatorcontrib><creatorcontrib>Yu, Xiaoyang</creatorcontrib><creatorcontrib>Deng, Yongkai</creatorcontrib><creatorcontrib>Wu, Chengyin</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Liu, Yunquan</creatorcontrib><title>Photoelectronic mapping of the spin–orbit interaction of intense light fields</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>The interaction between a quantum particle’s spin angular momentum 1 and its orbital angular momentum 2 is ubiquitous in nature. In optics, the spin–orbit optical phenomenon is closely related with the light–matter interaction 3 and has been of great interest 4 , 5 . With the development of laser technology 6 , the high-power and ultrafast light sources now serve as a crucial tool in revealing the behaviour of matter under extreme conditions. A comprehensive knowledge of the spin–orbit interaction for intense light is of utmost importance. Here, we report the in situ modulation and visualization of the optical orbital-to-spin conversion in the strong-field regime. We show that, through manipulating the morphology of femtosecond cylindrical vector vortex pulses 7 by a slit, the photon’s orbital angular momentum can be controllably transformed into spin after focusing. By employing a strong-field ionization experiment, the orbital-to-spin conversion can be imaged and measured through the photoelectron momentum distributions. Such detection and consequent control of the spin–orbit dynamics of intense laser fields has implications for controlling photoelectron holography and coherent extreme-ultraviolet radiation 8 . Sculpting and focusing femtosecond cylindrical vector vortex pulses by a slit allows the controllable transformation of the photon’s orbital angular momentum into spin angular momentum, which can be characterized in situ by a strong-field ionization experiment.</description><subject>132/122</subject><subject>639/624/1107/1110</subject><subject>639/624/400/584</subject><subject>639/766/36</subject><subject>639/766/400/1100</subject><subject>Angular momentum</subject><subject>Applied and Technical Physics</subject><subject>Conversion</subject><subject>Electric fields</subject><subject>Experiments</subject><subject>Femtosecond pulses</subject><subject>Field ionization</subject><subject>Focusing</subject><subject>Holography</subject><subject>Ionization</subject><subject>Lasers</subject><subject>Letter</subject><subject>Light</subject><subject>Light sources</subject><subject>Morphology</subject><subject>Optics</subject><subject>Orbital mechanics</subject><subject>Particle spin</subject><subject>Photoelectrons</subject><subject>Photonics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Spin dynamics</subject><subject>Stability</subject><subject>Vortices</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyWmA127PhnRBVQpEplgNlKHKd1ldrBdgc23oE35ElICIKN6d6je8650gfAJcHXBFN5kxgpOUe4wAhjgRWiR2BGBFOISUWPf3dZnoKzlHYYl1QVxQysn7YhB9tZk2PwzsB91ffOb2BoYd5amAbx-f4RYu0ydD7bWJnsgh_vo_TJws5tthm2znZNOgcnbdUle_Ez5-Dl_u55sUSr9cPj4naFDCUqo7oqCJWGmpoIzmuLBeOiJCXFklRGEsWJ4dxIjjmxrWKyFJw1tWoFlo1pGjoHV1NvH8Prwaasd-EQ_fBSF0xSRqgSdHAVk8vEkFK0re6j21fxTROsR3B6AqcHcPobnB5DdAqlwew3Nv5V_5P6AuuhcX8</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Fang, Yiqi</creator><creator>Han, Meng</creator><creator>Ge, Peipei</creator><creator>Guo, Zhenning</creator><creator>Yu, Xiaoyang</creator><creator>Deng, Yongkai</creator><creator>Wu, Chengyin</creator><creator>Gong, Qihuang</creator><creator>Liu, Yunquan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6952-6009</orcidid><orcidid>https://orcid.org/0000-0003-1137-7236</orcidid></search><sort><creationdate>20210201</creationdate><title>Photoelectronic mapping of the spin–orbit interaction of intense light fields</title><author>Fang, Yiqi ; Han, Meng ; Ge, Peipei ; Guo, Zhenning ; Yu, Xiaoyang ; Deng, Yongkai ; Wu, Chengyin ; Gong, Qihuang ; Liu, Yunquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ba2138c3cb1766be074675153081ac81961c66c86061ef9485764db9f708dcdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>132/122</topic><topic>639/624/1107/1110</topic><topic>639/624/400/584</topic><topic>639/766/36</topic><topic>639/766/400/1100</topic><topic>Angular momentum</topic><topic>Applied and Technical Physics</topic><topic>Conversion</topic><topic>Electric fields</topic><topic>Experiments</topic><topic>Femtosecond pulses</topic><topic>Field ionization</topic><topic>Focusing</topic><topic>Holography</topic><topic>Ionization</topic><topic>Lasers</topic><topic>Letter</topic><topic>Light</topic><topic>Light sources</topic><topic>Morphology</topic><topic>Optics</topic><topic>Orbital mechanics</topic><topic>Particle spin</topic><topic>Photoelectrons</topic><topic>Photonics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Spin dynamics</topic><topic>Stability</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Yiqi</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Ge, Peipei</creatorcontrib><creatorcontrib>Guo, Zhenning</creatorcontrib><creatorcontrib>Yu, Xiaoyang</creatorcontrib><creatorcontrib>Deng, Yongkai</creatorcontrib><creatorcontrib>Wu, Chengyin</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Liu, Yunquan</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Yiqi</au><au>Han, Meng</au><au>Ge, Peipei</au><au>Guo, Zhenning</au><au>Yu, Xiaoyang</au><au>Deng, Yongkai</au><au>Wu, Chengyin</au><au>Gong, Qihuang</au><au>Liu, Yunquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectronic mapping of the spin–orbit interaction of intense light fields</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>15</volume><issue>2</issue><spage>115</spage><epage>120</epage><pages>115-120</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>The interaction between a quantum particle’s spin angular momentum 1 and its orbital angular momentum 2 is ubiquitous in nature. In optics, the spin–orbit optical phenomenon is closely related with the light–matter interaction 3 and has been of great interest 4 , 5 . With the development of laser technology 6 , the high-power and ultrafast light sources now serve as a crucial tool in revealing the behaviour of matter under extreme conditions. A comprehensive knowledge of the spin–orbit interaction for intense light is of utmost importance. Here, we report the in situ modulation and visualization of the optical orbital-to-spin conversion in the strong-field regime. We show that, through manipulating the morphology of femtosecond cylindrical vector vortex pulses 7 by a slit, the photon’s orbital angular momentum can be controllably transformed into spin after focusing. By employing a strong-field ionization experiment, the orbital-to-spin conversion can be imaged and measured through the photoelectron momentum distributions. Such detection and consequent control of the spin–orbit dynamics of intense laser fields has implications for controlling photoelectron holography and coherent extreme-ultraviolet radiation 8 . Sculpting and focusing femtosecond cylindrical vector vortex pulses by a slit allows the controllable transformation of the photon’s orbital angular momentum into spin angular momentum, which can be characterized in situ by a strong-field ionization experiment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-020-00709-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6952-6009</orcidid><orcidid>https://orcid.org/0000-0003-1137-7236</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2021-02, Vol.15 (2), p.115-120
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2483413973
source Nature.com
subjects 132/122
639/624/1107/1110
639/624/400/584
639/766/36
639/766/400/1100
Angular momentum
Applied and Technical Physics
Conversion
Electric fields
Experiments
Femtosecond pulses
Field ionization
Focusing
Holography
Ionization
Lasers
Letter
Light
Light sources
Morphology
Optics
Orbital mechanics
Particle spin
Photoelectrons
Photonics
Photons
Physics
Physics and Astronomy
Quantum Physics
Spin dynamics
Stability
Vortices
title Photoelectronic mapping of the spin–orbit interaction of intense light fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectronic%20mapping%20of%20the%20spin%E2%80%93orbit%20interaction%20of%20intense%20light%20fields&rft.jtitle=Nature%20photonics&rft.au=Fang,%20Yiqi&rft.date=2021-02-01&rft.volume=15&rft.issue=2&rft.spage=115&rft.epage=120&rft.pages=115-120&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-020-00709-3&rft_dat=%3Cproquest_cross%3E2483413973%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ba2138c3cb1766be074675153081ac81961c66c86061ef9485764db9f708dcdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2483413973&rft_id=info:pmid/&rfr_iscdi=true