Loading…
Photoelectronic mapping of the spin–orbit interaction of intense light fields
The interaction between a quantum particle’s spin angular momentum 1 and its orbital angular momentum 2 is ubiquitous in nature. In optics, the spin–orbit optical phenomenon is closely related with the light–matter interaction 3 and has been of great interest 4 , 5 . With the development of laser te...
Saved in:
Published in: | Nature photonics 2021-02, Vol.15 (2), p.115-120 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-ba2138c3cb1766be074675153081ac81961c66c86061ef9485764db9f708dcdd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-ba2138c3cb1766be074675153081ac81961c66c86061ef9485764db9f708dcdd3 |
container_end_page | 120 |
container_issue | 2 |
container_start_page | 115 |
container_title | Nature photonics |
container_volume | 15 |
creator | Fang, Yiqi Han, Meng Ge, Peipei Guo, Zhenning Yu, Xiaoyang Deng, Yongkai Wu, Chengyin Gong, Qihuang Liu, Yunquan |
description | The interaction between a quantum particle’s spin angular momentum
1
and its orbital angular momentum
2
is ubiquitous in nature. In optics, the spin–orbit optical phenomenon is closely related with the light–matter interaction
3
and has been of great interest
4
,
5
. With the development of laser technology
6
, the high-power and ultrafast light sources now serve as a crucial tool in revealing the behaviour of matter under extreme conditions. A comprehensive knowledge of the spin–orbit interaction for intense light is of utmost importance. Here, we report the in situ modulation and visualization of the optical orbital-to-spin conversion in the strong-field regime. We show that, through manipulating the morphology of femtosecond cylindrical vector vortex pulses
7
by a slit, the photon’s orbital angular momentum can be controllably transformed into spin after focusing. By employing a strong-field ionization experiment, the orbital-to-spin conversion can be imaged and measured through the photoelectron momentum distributions. Such detection and consequent control of the spin–orbit dynamics of intense laser fields has implications for controlling photoelectron holography and coherent extreme-ultraviolet radiation
8
.
Sculpting and focusing femtosecond cylindrical vector vortex pulses by a slit allows the controllable transformation of the photon’s orbital angular momentum into spin angular momentum, which can be characterized in situ by a strong-field ionization experiment. |
doi_str_mv | 10.1038/s41566-020-00709-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2483413973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483413973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ba2138c3cb1766be074675153081ac81961c66c86061ef9485764db9f708dcdd3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyWmA127PhnRBVQpEplgNlKHKd1ldrBdgc23oE35ElICIKN6d6je8650gfAJcHXBFN5kxgpOUe4wAhjgRWiR2BGBFOISUWPf3dZnoKzlHYYl1QVxQysn7YhB9tZk2PwzsB91ffOb2BoYd5amAbx-f4RYu0ydD7bWJnsgh_vo_TJws5tthm2znZNOgcnbdUle_Ez5-Dl_u55sUSr9cPj4naFDCUqo7oqCJWGmpoIzmuLBeOiJCXFklRGEsWJ4dxIjjmxrWKyFJw1tWoFlo1pGjoHV1NvH8Prwaasd-EQ_fBSF0xSRqgSdHAVk8vEkFK0re6j21fxTROsR3B6AqcHcPobnB5DdAqlwew3Nv5V_5P6AuuhcX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483413973</pqid></control><display><type>article</type><title>Photoelectronic mapping of the spin–orbit interaction of intense light fields</title><source>Nature.com</source><creator>Fang, Yiqi ; Han, Meng ; Ge, Peipei ; Guo, Zhenning ; Yu, Xiaoyang ; Deng, Yongkai ; Wu, Chengyin ; Gong, Qihuang ; Liu, Yunquan</creator><creatorcontrib>Fang, Yiqi ; Han, Meng ; Ge, Peipei ; Guo, Zhenning ; Yu, Xiaoyang ; Deng, Yongkai ; Wu, Chengyin ; Gong, Qihuang ; Liu, Yunquan</creatorcontrib><description>The interaction between a quantum particle’s spin angular momentum
1
and its orbital angular momentum
2
is ubiquitous in nature. In optics, the spin–orbit optical phenomenon is closely related with the light–matter interaction
3
and has been of great interest
4
,
5
. With the development of laser technology
6
, the high-power and ultrafast light sources now serve as a crucial tool in revealing the behaviour of matter under extreme conditions. A comprehensive knowledge of the spin–orbit interaction for intense light is of utmost importance. Here, we report the in situ modulation and visualization of the optical orbital-to-spin conversion in the strong-field regime. We show that, through manipulating the morphology of femtosecond cylindrical vector vortex pulses
7
by a slit, the photon’s orbital angular momentum can be controllably transformed into spin after focusing. By employing a strong-field ionization experiment, the orbital-to-spin conversion can be imaged and measured through the photoelectron momentum distributions. Such detection and consequent control of the spin–orbit dynamics of intense laser fields has implications for controlling photoelectron holography and coherent extreme-ultraviolet radiation
8
.
Sculpting and focusing femtosecond cylindrical vector vortex pulses by a slit allows the controllable transformation of the photon’s orbital angular momentum into spin angular momentum, which can be characterized in situ by a strong-field ionization experiment.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-020-00709-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/122 ; 639/624/1107/1110 ; 639/624/400/584 ; 639/766/36 ; 639/766/400/1100 ; Angular momentum ; Applied and Technical Physics ; Conversion ; Electric fields ; Experiments ; Femtosecond pulses ; Field ionization ; Focusing ; Holography ; Ionization ; Lasers ; Letter ; Light ; Light sources ; Morphology ; Optics ; Orbital mechanics ; Particle spin ; Photoelectrons ; Photonics ; Photons ; Physics ; Physics and Astronomy ; Quantum Physics ; Spin dynamics ; Stability ; Vortices</subject><ispartof>Nature photonics, 2021-02, Vol.15 (2), p.115-120</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ba2138c3cb1766be074675153081ac81961c66c86061ef9485764db9f708dcdd3</citedby><cites>FETCH-LOGICAL-c319t-ba2138c3cb1766be074675153081ac81961c66c86061ef9485764db9f708dcdd3</cites><orcidid>0000-0001-6952-6009 ; 0000-0003-1137-7236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fang, Yiqi</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Ge, Peipei</creatorcontrib><creatorcontrib>Guo, Zhenning</creatorcontrib><creatorcontrib>Yu, Xiaoyang</creatorcontrib><creatorcontrib>Deng, Yongkai</creatorcontrib><creatorcontrib>Wu, Chengyin</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Liu, Yunquan</creatorcontrib><title>Photoelectronic mapping of the spin–orbit interaction of intense light fields</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>The interaction between a quantum particle’s spin angular momentum
1
and its orbital angular momentum
2
is ubiquitous in nature. In optics, the spin–orbit optical phenomenon is closely related with the light–matter interaction
3
and has been of great interest
4
,
5
. With the development of laser technology
6
, the high-power and ultrafast light sources now serve as a crucial tool in revealing the behaviour of matter under extreme conditions. A comprehensive knowledge of the spin–orbit interaction for intense light is of utmost importance. Here, we report the in situ modulation and visualization of the optical orbital-to-spin conversion in the strong-field regime. We show that, through manipulating the morphology of femtosecond cylindrical vector vortex pulses
7
by a slit, the photon’s orbital angular momentum can be controllably transformed into spin after focusing. By employing a strong-field ionization experiment, the orbital-to-spin conversion can be imaged and measured through the photoelectron momentum distributions. Such detection and consequent control of the spin–orbit dynamics of intense laser fields has implications for controlling photoelectron holography and coherent extreme-ultraviolet radiation
8
.
Sculpting and focusing femtosecond cylindrical vector vortex pulses by a slit allows the controllable transformation of the photon’s orbital angular momentum into spin angular momentum, which can be characterized in situ by a strong-field ionization experiment.</description><subject>132/122</subject><subject>639/624/1107/1110</subject><subject>639/624/400/584</subject><subject>639/766/36</subject><subject>639/766/400/1100</subject><subject>Angular momentum</subject><subject>Applied and Technical Physics</subject><subject>Conversion</subject><subject>Electric fields</subject><subject>Experiments</subject><subject>Femtosecond pulses</subject><subject>Field ionization</subject><subject>Focusing</subject><subject>Holography</subject><subject>Ionization</subject><subject>Lasers</subject><subject>Letter</subject><subject>Light</subject><subject>Light sources</subject><subject>Morphology</subject><subject>Optics</subject><subject>Orbital mechanics</subject><subject>Particle spin</subject><subject>Photoelectrons</subject><subject>Photonics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Spin dynamics</subject><subject>Stability</subject><subject>Vortices</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyWmA127PhnRBVQpEplgNlKHKd1ldrBdgc23oE35ElICIKN6d6je8650gfAJcHXBFN5kxgpOUe4wAhjgRWiR2BGBFOISUWPf3dZnoKzlHYYl1QVxQysn7YhB9tZk2PwzsB91ffOb2BoYd5amAbx-f4RYu0ydD7bWJnsgh_vo_TJws5tthm2znZNOgcnbdUle_Ez5-Dl_u55sUSr9cPj4naFDCUqo7oqCJWGmpoIzmuLBeOiJCXFklRGEsWJ4dxIjjmxrWKyFJw1tWoFlo1pGjoHV1NvH8Prwaasd-EQ_fBSF0xSRqgSdHAVk8vEkFK0re6j21fxTROsR3B6AqcHcPobnB5DdAqlwew3Nv5V_5P6AuuhcX8</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Fang, Yiqi</creator><creator>Han, Meng</creator><creator>Ge, Peipei</creator><creator>Guo, Zhenning</creator><creator>Yu, Xiaoyang</creator><creator>Deng, Yongkai</creator><creator>Wu, Chengyin</creator><creator>Gong, Qihuang</creator><creator>Liu, Yunquan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6952-6009</orcidid><orcidid>https://orcid.org/0000-0003-1137-7236</orcidid></search><sort><creationdate>20210201</creationdate><title>Photoelectronic mapping of the spin–orbit interaction of intense light fields</title><author>Fang, Yiqi ; Han, Meng ; Ge, Peipei ; Guo, Zhenning ; Yu, Xiaoyang ; Deng, Yongkai ; Wu, Chengyin ; Gong, Qihuang ; Liu, Yunquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ba2138c3cb1766be074675153081ac81961c66c86061ef9485764db9f708dcdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>132/122</topic><topic>639/624/1107/1110</topic><topic>639/624/400/584</topic><topic>639/766/36</topic><topic>639/766/400/1100</topic><topic>Angular momentum</topic><topic>Applied and Technical Physics</topic><topic>Conversion</topic><topic>Electric fields</topic><topic>Experiments</topic><topic>Femtosecond pulses</topic><topic>Field ionization</topic><topic>Focusing</topic><topic>Holography</topic><topic>Ionization</topic><topic>Lasers</topic><topic>Letter</topic><topic>Light</topic><topic>Light sources</topic><topic>Morphology</topic><topic>Optics</topic><topic>Orbital mechanics</topic><topic>Particle spin</topic><topic>Photoelectrons</topic><topic>Photonics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Spin dynamics</topic><topic>Stability</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Yiqi</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Ge, Peipei</creatorcontrib><creatorcontrib>Guo, Zhenning</creatorcontrib><creatorcontrib>Yu, Xiaoyang</creatorcontrib><creatorcontrib>Deng, Yongkai</creatorcontrib><creatorcontrib>Wu, Chengyin</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Liu, Yunquan</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Yiqi</au><au>Han, Meng</au><au>Ge, Peipei</au><au>Guo, Zhenning</au><au>Yu, Xiaoyang</au><au>Deng, Yongkai</au><au>Wu, Chengyin</au><au>Gong, Qihuang</au><au>Liu, Yunquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectronic mapping of the spin–orbit interaction of intense light fields</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>15</volume><issue>2</issue><spage>115</spage><epage>120</epage><pages>115-120</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>The interaction between a quantum particle’s spin angular momentum
1
and its orbital angular momentum
2
is ubiquitous in nature. In optics, the spin–orbit optical phenomenon is closely related with the light–matter interaction
3
and has been of great interest
4
,
5
. With the development of laser technology
6
, the high-power and ultrafast light sources now serve as a crucial tool in revealing the behaviour of matter under extreme conditions. A comprehensive knowledge of the spin–orbit interaction for intense light is of utmost importance. Here, we report the in situ modulation and visualization of the optical orbital-to-spin conversion in the strong-field regime. We show that, through manipulating the morphology of femtosecond cylindrical vector vortex pulses
7
by a slit, the photon’s orbital angular momentum can be controllably transformed into spin after focusing. By employing a strong-field ionization experiment, the orbital-to-spin conversion can be imaged and measured through the photoelectron momentum distributions. Such detection and consequent control of the spin–orbit dynamics of intense laser fields has implications for controlling photoelectron holography and coherent extreme-ultraviolet radiation
8
.
Sculpting and focusing femtosecond cylindrical vector vortex pulses by a slit allows the controllable transformation of the photon’s orbital angular momentum into spin angular momentum, which can be characterized in situ by a strong-field ionization experiment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-020-00709-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6952-6009</orcidid><orcidid>https://orcid.org/0000-0003-1137-7236</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2021-02, Vol.15 (2), p.115-120 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2483413973 |
source | Nature.com |
subjects | 132/122 639/624/1107/1110 639/624/400/584 639/766/36 639/766/400/1100 Angular momentum Applied and Technical Physics Conversion Electric fields Experiments Femtosecond pulses Field ionization Focusing Holography Ionization Lasers Letter Light Light sources Morphology Optics Orbital mechanics Particle spin Photoelectrons Photonics Photons Physics Physics and Astronomy Quantum Physics Spin dynamics Stability Vortices |
title | Photoelectronic mapping of the spin–orbit interaction of intense light fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectronic%20mapping%20of%20the%20spin%E2%80%93orbit%20interaction%20of%20intense%20light%20fields&rft.jtitle=Nature%20photonics&rft.au=Fang,%20Yiqi&rft.date=2021-02-01&rft.volume=15&rft.issue=2&rft.spage=115&rft.epage=120&rft.pages=115-120&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-020-00709-3&rft_dat=%3Cproquest_cross%3E2483413973%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ba2138c3cb1766be074675153081ac81961c66c86061ef9485764db9f708dcdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2483413973&rft_id=info:pmid/&rfr_iscdi=true |